利用高含量固体废物制备硅酸盐基烧结材料及其动力学研究

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Minglong Ma, He Yang, Shengnan Liu, Miao Zhou, Yuzheng Wang
{"title":"利用高含量固体废物制备硅酸盐基烧结材料及其动力学研究","authors":"Minglong Ma,&nbsp;He Yang,&nbsp;Shengnan Liu,&nbsp;Miao Zhou,&nbsp;Yuzheng Wang","doi":"10.1111/ijac.15026","DOIUrl":null,"url":null,"abstract":"<p>In this paper, steel slag and fly ash as the main raw materials, silicate-based sintering materials (SBSM) were prepared by using high-temperature firing method. The effects of steel slag addition and firing temperature on the linear shrinkage, water absorption, bulk density, and compressive strength parameters of SBSM were studied. The results show that with the increase of steel slag addition and firing temperature, the water absorption rates of SBSM show a trend of first decreasing and then increasing; the volume density, shrinkage rate, and compressive strength show a trend of first increasing and then decreasing. The main phase of SBSM is anorthite; however, a higher amount of steel slag and higher firing temperature can promote the formation of pyroxene phase. The microstructure composed of anorthite, pyroxene, and glass phases is similar to that of “reinforced concrete,” which is more conducive to improving the strength and toughness of the SBSM. By calculating the crystallization activation energy and crystal index, a crystal activation energy of 50.72 kJ/mol is obtained, which is helpful for crystal formation. The crystal index is 1.22, indicating that the crystallization mode in the SBSM is surface crystallization.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and dynamics of silicate based sintered materials using high content solid waste\",\"authors\":\"Minglong Ma,&nbsp;He Yang,&nbsp;Shengnan Liu,&nbsp;Miao Zhou,&nbsp;Yuzheng Wang\",\"doi\":\"10.1111/ijac.15026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, steel slag and fly ash as the main raw materials, silicate-based sintering materials (SBSM) were prepared by using high-temperature firing method. The effects of steel slag addition and firing temperature on the linear shrinkage, water absorption, bulk density, and compressive strength parameters of SBSM were studied. The results show that with the increase of steel slag addition and firing temperature, the water absorption rates of SBSM show a trend of first decreasing and then increasing; the volume density, shrinkage rate, and compressive strength show a trend of first increasing and then decreasing. The main phase of SBSM is anorthite; however, a higher amount of steel slag and higher firing temperature can promote the formation of pyroxene phase. The microstructure composed of anorthite, pyroxene, and glass phases is similar to that of “reinforced concrete,” which is more conducive to improving the strength and toughness of the SBSM. By calculating the crystallization activation energy and crystal index, a crystal activation energy of 50.72 kJ/mol is obtained, which is helpful for crystal formation. The crystal index is 1.22, indicating that the crystallization mode in the SBSM is surface crystallization.</p>\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":\"22 3\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijac.15026\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.15026","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文以钢渣和粉煤灰为主要原料,采用高温烧制法制备硅酸盐基烧结材料(SBSM)。研究了钢渣添加量和烧成温度对SBSM线收缩率、吸水率、容重和抗压强度等参数的影响。结果表明:随着钢渣添加量和烧成温度的增加,SBSM的吸水率呈现先降低后升高的趋势;其体积密度、收缩率和抗压强度均表现出先增大后减小的趋势。SBSM主要相为钙长岩;而较高的钢渣用量和较高的烧成温度有利于辉石相的形成。由钙长石、辉石和玻璃相组成的微观结构与“钢筋混凝土”相似,更有利于提高SBSM的强度和韧性。通过计算结晶活化能和晶体指数,得到结晶活化能为50.72 kJ/mol,有利于结晶的形成。结晶指数为1.22,表明SBSM的结晶方式为表面结晶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and dynamics of silicate based sintered materials using high content solid waste

In this paper, steel slag and fly ash as the main raw materials, silicate-based sintering materials (SBSM) were prepared by using high-temperature firing method. The effects of steel slag addition and firing temperature on the linear shrinkage, water absorption, bulk density, and compressive strength parameters of SBSM were studied. The results show that with the increase of steel slag addition and firing temperature, the water absorption rates of SBSM show a trend of first decreasing and then increasing; the volume density, shrinkage rate, and compressive strength show a trend of first increasing and then decreasing. The main phase of SBSM is anorthite; however, a higher amount of steel slag and higher firing temperature can promote the formation of pyroxene phase. The microstructure composed of anorthite, pyroxene, and glass phases is similar to that of “reinforced concrete,” which is more conducive to improving the strength and toughness of the SBSM. By calculating the crystallization activation energy and crystal index, a crystal activation energy of 50.72 kJ/mol is obtained, which is helpful for crystal formation. The crystal index is 1.22, indicating that the crystallization mode in the SBSM is surface crystallization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信