美国玉米和大豆物候学在应对未来气候变化方面的广泛进展

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yanjun Yang, Bo Tao, Alex C. Ruane, Chaopeng Shen, David S. Matteson, Rémi Cousin, Wei Ren
{"title":"美国玉米和大豆物候学在应对未来气候变化方面的广泛进展","authors":"Yanjun Yang,&nbsp;Bo Tao,&nbsp;Alex C. Ruane,&nbsp;Chaopeng Shen,&nbsp;David S. Matteson,&nbsp;Rémi Cousin,&nbsp;Wei Ren","doi":"10.1029/2024JG008266","DOIUrl":null,"url":null,"abstract":"<p>Crop phenology regulates seasonal carbon and water fluxes between croplands and the atmosphere and provides essential information for monitoring and predicting crop growth dynamics and productivity. However, under rapid climate change and more frequent extreme events, future changes in crop phenological shifts have not been well investigated and fully considered in earth system modeling and regional climate assessments. Here, we propose an innovative approach combining remote sensing imagery and machine learning (ML) with climate and survey data to predict future crop phenological shifts across the US corn and soybean systems. Specifically, our projected findings demonstrate distinct acceleration patterns—under the RCP 4.5/RCP 8.5 scenarios, corn planting, silking, maturity, and harvesting stages would significantly advance by 0.94/1.66, 1.13/2.45, 0.89/2.68, and 1.04/2.16 days/decade during 2021–2099, respectively. Soybeans exhibit more muted responses with phenological stages showing relatively smaller negative trends (0.59, 1.08, 0.07, and 0.64 days/decade under the RCP 4.5 vs. 1.24, 1.53, 0.92, and 1.04 days/decade under the RCP 8.5). These spatially explicit projections illustrate how crop phenology would respond to future climate change, highlighting widespread and progressively earlier phenological timing. Based on these findings, we call for a specific effort to quantify the cascading effects of future phenology shifts on crop yield and carbon, water, and energy balances and, accordingly, craft targeted adaptive strategies.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Widespread Advances in Corn and Soybean Phenology in Response to Future Climate Change Across the United States\",\"authors\":\"Yanjun Yang,&nbsp;Bo Tao,&nbsp;Alex C. Ruane,&nbsp;Chaopeng Shen,&nbsp;David S. Matteson,&nbsp;Rémi Cousin,&nbsp;Wei Ren\",\"doi\":\"10.1029/2024JG008266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crop phenology regulates seasonal carbon and water fluxes between croplands and the atmosphere and provides essential information for monitoring and predicting crop growth dynamics and productivity. However, under rapid climate change and more frequent extreme events, future changes in crop phenological shifts have not been well investigated and fully considered in earth system modeling and regional climate assessments. Here, we propose an innovative approach combining remote sensing imagery and machine learning (ML) with climate and survey data to predict future crop phenological shifts across the US corn and soybean systems. Specifically, our projected findings demonstrate distinct acceleration patterns—under the RCP 4.5/RCP 8.5 scenarios, corn planting, silking, maturity, and harvesting stages would significantly advance by 0.94/1.66, 1.13/2.45, 0.89/2.68, and 1.04/2.16 days/decade during 2021–2099, respectively. Soybeans exhibit more muted responses with phenological stages showing relatively smaller negative trends (0.59, 1.08, 0.07, and 0.64 days/decade under the RCP 4.5 vs. 1.24, 1.53, 0.92, and 1.04 days/decade under the RCP 8.5). These spatially explicit projections illustrate how crop phenology would respond to future climate change, highlighting widespread and progressively earlier phenological timing. Based on these findings, we call for a specific effort to quantify the cascading effects of future phenology shifts on crop yield and carbon, water, and energy balances and, accordingly, craft targeted adaptive strategies.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008266\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008266","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

作物物候调节农田与大气之间的季节性碳和水通量,为监测和预测作物生长动态和生产力提供重要信息。然而,在气候快速变化和极端事件更加频繁的情况下,作物物候变化的未来变化在地球系统模拟和区域气候评估中尚未得到充分研究和充分考虑。在这里,我们提出了一种将遥感图像和机器学习(ML)与气候和调查数据相结合的创新方法,以预测美国玉米和大豆系统未来的作物物候变化。在RCP 4.5/RCP 8.5情景下,2021-2099年玉米种植期、吐丝期、成熟期和收获期将分别显著提前0.94/1.66、1.13/2.45、0.89/2.68和1.04/2.16天/ 10年。大豆对物候期的响应较弱,负变化趋势相对较小(RCP 4.5下为0.59、1.08、0.07和0.64天/ 10年,而RCP 8.5下为1.24、1.53、0.92和1.04天/ 10年)。这些空间上明确的预测说明了作物物候如何响应未来的气候变化,突出了广泛和逐渐提前的物候时间。基于这些发现,我们呼吁做出具体努力,量化未来物候变化对作物产量和碳、水和能量平衡的级联效应,并据此制定有针对性的适应策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Widespread Advances in Corn and Soybean Phenology in Response to Future Climate Change Across the United States

Crop phenology regulates seasonal carbon and water fluxes between croplands and the atmosphere and provides essential information for monitoring and predicting crop growth dynamics and productivity. However, under rapid climate change and more frequent extreme events, future changes in crop phenological shifts have not been well investigated and fully considered in earth system modeling and regional climate assessments. Here, we propose an innovative approach combining remote sensing imagery and machine learning (ML) with climate and survey data to predict future crop phenological shifts across the US corn and soybean systems. Specifically, our projected findings demonstrate distinct acceleration patterns—under the RCP 4.5/RCP 8.5 scenarios, corn planting, silking, maturity, and harvesting stages would significantly advance by 0.94/1.66, 1.13/2.45, 0.89/2.68, and 1.04/2.16 days/decade during 2021–2099, respectively. Soybeans exhibit more muted responses with phenological stages showing relatively smaller negative trends (0.59, 1.08, 0.07, and 0.64 days/decade under the RCP 4.5 vs. 1.24, 1.53, 0.92, and 1.04 days/decade under the RCP 8.5). These spatially explicit projections illustrate how crop phenology would respond to future climate change, highlighting widespread and progressively earlier phenological timing. Based on these findings, we call for a specific effort to quantify the cascading effects of future phenology shifts on crop yield and carbon, water, and energy balances and, accordingly, craft targeted adaptive strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信