非密度导致高维稳定哈密顿拓扑

IF 1 2区 数学 Q1 MATHEMATICS
Robert Cardona, Fabio Gironella
{"title":"非密度导致高维稳定哈密顿拓扑","authors":"Robert Cardona,&nbsp;Fabio Gironella","doi":"10.1112/jlms.70143","DOIUrl":null,"url":null,"abstract":"<p>We push forward the study of higher dimensional stable Hamiltonian topology by establishing two nondensity results. First, we prove that stable hypersurfaces are not <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>3</mn>\n </msup>\n <annotation>$C^3$</annotation>\n </semantics></math>-dense in any isotopy class of embedded hypersurfaces on any ambient symplectic manifold of dimension <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>8</mn>\n </mrow>\n <annotation>$2n\\geqslant 8$</annotation>\n </semantics></math>. Our second result is that on any manifold of dimension <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>m</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>⩾</mo>\n <mn>5</mn>\n </mrow>\n <annotation>$2m+1\\geqslant 5$</annotation>\n </semantics></math>, the set of non-degenerate stable Hamiltonian structures is not <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n <annotation>$C^2$</annotation>\n </semantics></math>-dense among stable Hamiltonian structures in any given stable homotopy class that satisfies a mild assumption. The latter generalizes a result by Cieliebak and Volkov to arbitrary dimensions.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nondensity results in high-dimensional stable Hamiltonian topology\",\"authors\":\"Robert Cardona,&nbsp;Fabio Gironella\",\"doi\":\"10.1112/jlms.70143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We push forward the study of higher dimensional stable Hamiltonian topology by establishing two nondensity results. First, we prove that stable hypersurfaces are not <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mn>3</mn>\\n </msup>\\n <annotation>$C^3$</annotation>\\n </semantics></math>-dense in any isotopy class of embedded hypersurfaces on any ambient symplectic manifold of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>8</mn>\\n </mrow>\\n <annotation>$2n\\\\geqslant 8$</annotation>\\n </semantics></math>. Our second result is that on any manifold of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>m</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>⩾</mo>\\n <mn>5</mn>\\n </mrow>\\n <annotation>$2m+1\\\\geqslant 5$</annotation>\\n </semantics></math>, the set of non-degenerate stable Hamiltonian structures is not <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$C^2$</annotation>\\n </semantics></math>-dense among stable Hamiltonian structures in any given stable homotopy class that satisfies a mild assumption. The latter generalizes a result by Cieliebak and Volkov to arbitrary dimensions.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70143\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70143","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过建立两个非密度结果,进一步推进了高维稳定哈密顿拓扑的研究。首先,我们证明稳定超曲面在任何2 n或8维的任何环境辛流形上的嵌入超曲面的任何同位素类中都不是c3 $C^3$ -致密的$2n\geqslant 8$。我们的第二个结果是在任何2m + 1小于5维度的流形$2m+1\geqslant 5$上,在满足温和假设的任何给定稳定同伦类的稳定哈密顿结构中,非简并稳定哈密顿结构集不是c2 $C^2$ -密的。后者将Cieliebak和Volkov的结果推广到任意维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nondensity results in high-dimensional stable Hamiltonian topology

We push forward the study of higher dimensional stable Hamiltonian topology by establishing two nondensity results. First, we prove that stable hypersurfaces are not C 3 $C^3$ -dense in any isotopy class of embedded hypersurfaces on any ambient symplectic manifold of dimension 2 n 8 $2n\geqslant 8$ . Our second result is that on any manifold of dimension 2 m + 1 5 $2m+1\geqslant 5$ , the set of non-degenerate stable Hamiltonian structures is not C 2 $C^2$ -dense among stable Hamiltonian structures in any given stable homotopy class that satisfies a mild assumption. The latter generalizes a result by Cieliebak and Volkov to arbitrary dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信