{"title":"非密度导致高维稳定哈密顿拓扑","authors":"Robert Cardona, Fabio Gironella","doi":"10.1112/jlms.70143","DOIUrl":null,"url":null,"abstract":"<p>We push forward the study of higher dimensional stable Hamiltonian topology by establishing two nondensity results. First, we prove that stable hypersurfaces are not <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>3</mn>\n </msup>\n <annotation>$C^3$</annotation>\n </semantics></math>-dense in any isotopy class of embedded hypersurfaces on any ambient symplectic manifold of dimension <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>8</mn>\n </mrow>\n <annotation>$2n\\geqslant 8$</annotation>\n </semantics></math>. Our second result is that on any manifold of dimension <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>m</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>⩾</mo>\n <mn>5</mn>\n </mrow>\n <annotation>$2m+1\\geqslant 5$</annotation>\n </semantics></math>, the set of non-degenerate stable Hamiltonian structures is not <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n <annotation>$C^2$</annotation>\n </semantics></math>-dense among stable Hamiltonian structures in any given stable homotopy class that satisfies a mild assumption. The latter generalizes a result by Cieliebak and Volkov to arbitrary dimensions.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nondensity results in high-dimensional stable Hamiltonian topology\",\"authors\":\"Robert Cardona, Fabio Gironella\",\"doi\":\"10.1112/jlms.70143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We push forward the study of higher dimensional stable Hamiltonian topology by establishing two nondensity results. First, we prove that stable hypersurfaces are not <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mn>3</mn>\\n </msup>\\n <annotation>$C^3$</annotation>\\n </semantics></math>-dense in any isotopy class of embedded hypersurfaces on any ambient symplectic manifold of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>8</mn>\\n </mrow>\\n <annotation>$2n\\\\geqslant 8$</annotation>\\n </semantics></math>. Our second result is that on any manifold of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>m</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>⩾</mo>\\n <mn>5</mn>\\n </mrow>\\n <annotation>$2m+1\\\\geqslant 5$</annotation>\\n </semantics></math>, the set of non-degenerate stable Hamiltonian structures is not <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$C^2$</annotation>\\n </semantics></math>-dense among stable Hamiltonian structures in any given stable homotopy class that satisfies a mild assumption. The latter generalizes a result by Cieliebak and Volkov to arbitrary dimensions.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70143\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70143","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Nondensity results in high-dimensional stable Hamiltonian topology
We push forward the study of higher dimensional stable Hamiltonian topology by establishing two nondensity results. First, we prove that stable hypersurfaces are not -dense in any isotopy class of embedded hypersurfaces on any ambient symplectic manifold of dimension . Our second result is that on any manifold of dimension , the set of non-degenerate stable Hamiltonian structures is not -dense among stable Hamiltonian structures in any given stable homotopy class that satisfies a mild assumption. The latter generalizes a result by Cieliebak and Volkov to arbitrary dimensions.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.