M. Salot, K. Santhy, D. Mandal, A. K. Pramanick, B. Rajasekaran, G. Avasthi, Sujoy K. Chaudhury
{"title":"电化学氧化法制备纳米氧化钨粉体的动力学及结构研究","authors":"M. Salot, K. Santhy, D. Mandal, A. K. Pramanick, B. Rajasekaran, G. Avasthi, Sujoy K. Chaudhury","doi":"10.1111/ijac.15080","DOIUrl":null,"url":null,"abstract":"<p>Tungsten oxide possesses unique properties owing to its multiple oxidation states. They are produced by several techniques with each having their advantages and limitations. In this study, the hydrated tungsten oxide nanopowders with varied morphology were synthesized by electrochemical oxidation of WC-6Co scrap at room temperature. This process is efficient and requires low capital investment. The effect of processing parameters, namely voltage, molarity, temperature, and electrolyte stirring on yield, structure, morphology, and energy bandgap is studied. The X-ray diffraction (XRD) analysis showed that at low voltage and low molarity monoclinic WO<sub>3</sub>.2H<sub>2</sub>O nanoparticles are synthesized. In contrast, at high molarity and high voltage, orthorhombic WO<sub>3</sub>.H<sub>2</sub>O nanoparticles are synthesized. Further, the size of crystal decreases with the increase in voltage during electrochemical oxidation of WC-6Co pellet. The in-situ XRD analysis showed progressive transformation of as-synthesized nanopowder from orthorhombic to cubic crystal structure. Thermal treatments using microwave radiation and muffle furnace resulted in partial phase transformation of hydrated tungsten oxide to cubic WO<sub>3</sub>.H<sub>0.5</sub> phase. The scanning electron microscopy and transmission electron microscopy analyses confirmed the formation of nanoplates, nanorods, and quantum dots depending on the processing parameters. The ultraviolet-visible spectroscopy showed a relatively lower energy bandgap of as-synthesized tungsten oxide nanopowder.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on the kinetics and structure of tungsten oxide nanopowder synthesized by an electrochemical oxidation process\",\"authors\":\"M. Salot, K. Santhy, D. Mandal, A. K. Pramanick, B. Rajasekaran, G. Avasthi, Sujoy K. Chaudhury\",\"doi\":\"10.1111/ijac.15080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tungsten oxide possesses unique properties owing to its multiple oxidation states. They are produced by several techniques with each having their advantages and limitations. In this study, the hydrated tungsten oxide nanopowders with varied morphology were synthesized by electrochemical oxidation of WC-6Co scrap at room temperature. This process is efficient and requires low capital investment. The effect of processing parameters, namely voltage, molarity, temperature, and electrolyte stirring on yield, structure, morphology, and energy bandgap is studied. The X-ray diffraction (XRD) analysis showed that at low voltage and low molarity monoclinic WO<sub>3</sub>.2H<sub>2</sub>O nanoparticles are synthesized. In contrast, at high molarity and high voltage, orthorhombic WO<sub>3</sub>.H<sub>2</sub>O nanoparticles are synthesized. Further, the size of crystal decreases with the increase in voltage during electrochemical oxidation of WC-6Co pellet. The in-situ XRD analysis showed progressive transformation of as-synthesized nanopowder from orthorhombic to cubic crystal structure. Thermal treatments using microwave radiation and muffle furnace resulted in partial phase transformation of hydrated tungsten oxide to cubic WO<sub>3</sub>.H<sub>0.5</sub> phase. The scanning electron microscopy and transmission electron microscopy analyses confirmed the formation of nanoplates, nanorods, and quantum dots depending on the processing parameters. The ultraviolet-visible spectroscopy showed a relatively lower energy bandgap of as-synthesized tungsten oxide nanopowder.</p>\",\"PeriodicalId\":13903,\"journal\":{\"name\":\"International Journal of Applied Ceramic Technology\",\"volume\":\"22 3\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Ceramic Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijac.15080\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.15080","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
A study on the kinetics and structure of tungsten oxide nanopowder synthesized by an electrochemical oxidation process
Tungsten oxide possesses unique properties owing to its multiple oxidation states. They are produced by several techniques with each having their advantages and limitations. In this study, the hydrated tungsten oxide nanopowders with varied morphology were synthesized by electrochemical oxidation of WC-6Co scrap at room temperature. This process is efficient and requires low capital investment. The effect of processing parameters, namely voltage, molarity, temperature, and electrolyte stirring on yield, structure, morphology, and energy bandgap is studied. The X-ray diffraction (XRD) analysis showed that at low voltage and low molarity monoclinic WO3.2H2O nanoparticles are synthesized. In contrast, at high molarity and high voltage, orthorhombic WO3.H2O nanoparticles are synthesized. Further, the size of crystal decreases with the increase in voltage during electrochemical oxidation of WC-6Co pellet. The in-situ XRD analysis showed progressive transformation of as-synthesized nanopowder from orthorhombic to cubic crystal structure. Thermal treatments using microwave radiation and muffle furnace resulted in partial phase transformation of hydrated tungsten oxide to cubic WO3.H0.5 phase. The scanning electron microscopy and transmission electron microscopy analyses confirmed the formation of nanoplates, nanorods, and quantum dots depending on the processing parameters. The ultraviolet-visible spectroscopy showed a relatively lower energy bandgap of as-synthesized tungsten oxide nanopowder.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;