对未测量地区罕见极端降雨的估计

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Pietro Devò, Maria Francesca Caruso, Marco Borga, Marco Marani
{"title":"对未测量地区罕见极端降雨的估计","authors":"Pietro Devò,&nbsp;Maria Francesca Caruso,&nbsp;Marco Borga,&nbsp;Marco Marani","doi":"10.1029/2024GL113576","DOIUrl":null,"url":null,"abstract":"<p>The probability estimation of rare or yet unobserved events is essential for hazard quantification, especially in the frequent case of short observational records. Data limitations can be mitigated by using regionalization techniques, which augment observational information, and by employing effective statistical models, such as the Metastatistical Extreme Value Distribution (MEVD), which maximizes the use of available observations. In this work, we develop the MEVD Regionalized framework (MEVD-R), with the aim of reducing the uncertainty in estimating the probability of rare events that are not present, or are not well sampled, in the observational record. Extensive testing using a global data set of 40,000 rain gauges across Europe, North America, and Australia demonstrates that MEVD-R yields negligible systematic error and greatly reduces predictive uncertainty, quantified via the use of independent test data subsets, compared to traditional approaches. The MEVD-R framework proves to be useful in data-scarce areas, even when conventional methods fail.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113576","citationCount":"0","resultStr":"{\"title\":\"Estimates of Rare Rainfall Extremes in Ungauged Areas\",\"authors\":\"Pietro Devò,&nbsp;Maria Francesca Caruso,&nbsp;Marco Borga,&nbsp;Marco Marani\",\"doi\":\"10.1029/2024GL113576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The probability estimation of rare or yet unobserved events is essential for hazard quantification, especially in the frequent case of short observational records. Data limitations can be mitigated by using regionalization techniques, which augment observational information, and by employing effective statistical models, such as the Metastatistical Extreme Value Distribution (MEVD), which maximizes the use of available observations. In this work, we develop the MEVD Regionalized framework (MEVD-R), with the aim of reducing the uncertainty in estimating the probability of rare events that are not present, or are not well sampled, in the observational record. Extensive testing using a global data set of 40,000 rain gauges across Europe, North America, and Australia demonstrates that MEVD-R yields negligible systematic error and greatly reduces predictive uncertainty, quantified via the use of independent test data subsets, compared to traditional approaches. The MEVD-R framework proves to be useful in data-scarce areas, even when conventional methods fail.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 7\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113576\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113576\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113576","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对罕见或未观测到的事件的概率估计对于危害量化是必不可少的,特别是在频繁出现的短观测记录的情况下。可以通过使用区域化技术(增加观测信息)和采用有效的统计模型(如亚稳态极值分布(MEVD))来减轻数据限制,该模型可最大限度地利用现有观测数据。在这项工作中,我们开发了MEVD区域化框架(MEVD- r),目的是减少在估计观测记录中不存在或未充分采样的罕见事件概率时的不确定性。通过对欧洲、北美和澳大利亚的40,000个雨量计的全球数据集进行的广泛测试表明,与传统方法相比,MEVD-R产生的系统误差可以忽略不计,并通过使用独立的测试数据子集大大降低了预测的不确定性。MEVD-R框架在数据匮乏的领域被证明是有用的,即使在传统方法失败的情况下也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimates of Rare Rainfall Extremes in Ungauged Areas

Estimates of Rare Rainfall Extremes in Ungauged Areas

The probability estimation of rare or yet unobserved events is essential for hazard quantification, especially in the frequent case of short observational records. Data limitations can be mitigated by using regionalization techniques, which augment observational information, and by employing effective statistical models, such as the Metastatistical Extreme Value Distribution (MEVD), which maximizes the use of available observations. In this work, we develop the MEVD Regionalized framework (MEVD-R), with the aim of reducing the uncertainty in estimating the probability of rare events that are not present, or are not well sampled, in the observational record. Extensive testing using a global data set of 40,000 rain gauges across Europe, North America, and Australia demonstrates that MEVD-R yields negligible systematic error and greatly reduces predictive uncertainty, quantified via the use of independent test data subsets, compared to traditional approaches. The MEVD-R framework proves to be useful in data-scarce areas, even when conventional methods fail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信