Chengrui Chang, Kohei Ohno, William H. Schulz, Tetsuo Yamaguchi
{"title":"湿颗粒介质中的异常剪应力变化:对滑坡横向断裂的启示","authors":"Chengrui Chang, Kohei Ohno, William H. Schulz, Tetsuo Yamaguchi","doi":"10.1029/2024GL113816","DOIUrl":null,"url":null,"abstract":"<p>Landslide assessments typically focus on the mechanical properties of the basal shear zone, but lateral faults are frequently overlooked, possibly due to their lower normal stresses and variably saturated conditions. Using double-cylinder shear experiments on wet granular systems as analogs for landslide lateral faults, we observe anomalous shear stress variations with fluid volume fractions, defying an expected unimodal relationship associated with capillary cohesion. At low fluid volume fractions, shear strength weakens as the wet grain assembly experiences reduced lateral pressure and increased boundary slip. This boundary slip subsequently vanishes, with an abrupt strengthening due to the dilation of the grain assembly against fluid surface tension as saturation approaches. Strike-slip motion and confinement in this system explain the strength anomaly, highlighting a critical role of lateral faults in landslide stability, particularly in cases where dynamics cannot be adequately explained by monitored pore-water pressure or basal friction.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113816","citationCount":"0","resultStr":"{\"title\":\"Anomalous Shear Stress Variation in Wet Granular Medium: Implications for Landslide Lateral Faults\",\"authors\":\"Chengrui Chang, Kohei Ohno, William H. Schulz, Tetsuo Yamaguchi\",\"doi\":\"10.1029/2024GL113816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Landslide assessments typically focus on the mechanical properties of the basal shear zone, but lateral faults are frequently overlooked, possibly due to their lower normal stresses and variably saturated conditions. Using double-cylinder shear experiments on wet granular systems as analogs for landslide lateral faults, we observe anomalous shear stress variations with fluid volume fractions, defying an expected unimodal relationship associated with capillary cohesion. At low fluid volume fractions, shear strength weakens as the wet grain assembly experiences reduced lateral pressure and increased boundary slip. This boundary slip subsequently vanishes, with an abrupt strengthening due to the dilation of the grain assembly against fluid surface tension as saturation approaches. Strike-slip motion and confinement in this system explain the strength anomaly, highlighting a critical role of lateral faults in landslide stability, particularly in cases where dynamics cannot be adequately explained by monitored pore-water pressure or basal friction.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 7\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113816\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113816\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113816","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Anomalous Shear Stress Variation in Wet Granular Medium: Implications for Landslide Lateral Faults
Landslide assessments typically focus on the mechanical properties of the basal shear zone, but lateral faults are frequently overlooked, possibly due to their lower normal stresses and variably saturated conditions. Using double-cylinder shear experiments on wet granular systems as analogs for landslide lateral faults, we observe anomalous shear stress variations with fluid volume fractions, defying an expected unimodal relationship associated with capillary cohesion. At low fluid volume fractions, shear strength weakens as the wet grain assembly experiences reduced lateral pressure and increased boundary slip. This boundary slip subsequently vanishes, with an abrupt strengthening due to the dilation of the grain assembly against fluid surface tension as saturation approaches. Strike-slip motion and confinement in this system explain the strength anomaly, highlighting a critical role of lateral faults in landslide stability, particularly in cases where dynamics cannot be adequately explained by monitored pore-water pressure or basal friction.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.