湿颗粒介质中的异常剪应力变化:对滑坡横向断裂的启示

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Chengrui Chang, Kohei Ohno, William H. Schulz, Tetsuo Yamaguchi
{"title":"湿颗粒介质中的异常剪应力变化:对滑坡横向断裂的启示","authors":"Chengrui Chang,&nbsp;Kohei Ohno,&nbsp;William H. Schulz,&nbsp;Tetsuo Yamaguchi","doi":"10.1029/2024GL113816","DOIUrl":null,"url":null,"abstract":"<p>Landslide assessments typically focus on the mechanical properties of the basal shear zone, but lateral faults are frequently overlooked, possibly due to their lower normal stresses and variably saturated conditions. Using double-cylinder shear experiments on wet granular systems as analogs for landslide lateral faults, we observe anomalous shear stress variations with fluid volume fractions, defying an expected unimodal relationship associated with capillary cohesion. At low fluid volume fractions, shear strength weakens as the wet grain assembly experiences reduced lateral pressure and increased boundary slip. This boundary slip subsequently vanishes, with an abrupt strengthening due to the dilation of the grain assembly against fluid surface tension as saturation approaches. Strike-slip motion and confinement in this system explain the strength anomaly, highlighting a critical role of lateral faults in landslide stability, particularly in cases where dynamics cannot be adequately explained by monitored pore-water pressure or basal friction.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113816","citationCount":"0","resultStr":"{\"title\":\"Anomalous Shear Stress Variation in Wet Granular Medium: Implications for Landslide Lateral Faults\",\"authors\":\"Chengrui Chang,&nbsp;Kohei Ohno,&nbsp;William H. Schulz,&nbsp;Tetsuo Yamaguchi\",\"doi\":\"10.1029/2024GL113816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Landslide assessments typically focus on the mechanical properties of the basal shear zone, but lateral faults are frequently overlooked, possibly due to their lower normal stresses and variably saturated conditions. Using double-cylinder shear experiments on wet granular systems as analogs for landslide lateral faults, we observe anomalous shear stress variations with fluid volume fractions, defying an expected unimodal relationship associated with capillary cohesion. At low fluid volume fractions, shear strength weakens as the wet grain assembly experiences reduced lateral pressure and increased boundary slip. This boundary slip subsequently vanishes, with an abrupt strengthening due to the dilation of the grain assembly against fluid surface tension as saturation approaches. Strike-slip motion and confinement in this system explain the strength anomaly, highlighting a critical role of lateral faults in landslide stability, particularly in cases where dynamics cannot be adequately explained by monitored pore-water pressure or basal friction.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 7\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113816\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113816\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113816","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

滑坡评估通常侧重于基底剪切带的力学特性,但横向断层经常被忽视,可能是由于其较低的正应力和可变的饱和条件。利用湿颗粒系统的双圆柱体剪切实验作为滑坡侧向断层的类似物,我们观察到剪切应力随流体体积分数的异常变化,违背了与毛细内聚力相关的预期单峰关系。当流体体积分数较低时,随着湿颗粒组合侧压降低和边界滑移增加,抗剪强度减弱。这种边界滑移随后消失,随着饱和度的接近,由于颗粒组合对流体表面张力的膨胀而突然加强。该系统中的走滑运动和约束解释了强度异常,突出了横向断层在滑坡稳定性中的关键作用,特别是在动态不能通过监测孔隙水压力或基底摩擦充分解释的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anomalous Shear Stress Variation in Wet Granular Medium: Implications for Landslide Lateral Faults

Anomalous Shear Stress Variation in Wet Granular Medium: Implications for Landslide Lateral Faults

Landslide assessments typically focus on the mechanical properties of the basal shear zone, but lateral faults are frequently overlooked, possibly due to their lower normal stresses and variably saturated conditions. Using double-cylinder shear experiments on wet granular systems as analogs for landslide lateral faults, we observe anomalous shear stress variations with fluid volume fractions, defying an expected unimodal relationship associated with capillary cohesion. At low fluid volume fractions, shear strength weakens as the wet grain assembly experiences reduced lateral pressure and increased boundary slip. This boundary slip subsequently vanishes, with an abrupt strengthening due to the dilation of the grain assembly against fluid surface tension as saturation approaches. Strike-slip motion and confinement in this system explain the strength anomaly, highlighting a critical role of lateral faults in landslide stability, particularly in cases where dynamics cannot be adequately explained by monitored pore-water pressure or basal friction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信