N. Shamshurim, N. Tamchek, Pramod K. Singh, I. M. Noor
{"title":"评价DMSO−NaCF3SO3电解质中的离子电导率:载流子浓度和迁移率的作用","authors":"N. Shamshurim, N. Tamchek, Pramod K. Singh, I. M. Noor","doi":"10.1007/s11581-025-06158-8","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the factors that influence conductivity changes in electrolyte systems due to salt doping is important for optimizing their performance. This work quantitatively evaluated key transport parameters, namely diffusivity (<i>D</i>), mobility (<i>µ</i>), and concentration (<i>n</i>) of charge carriers, and the Stokes drag coefficient (<i>F</i><sub><i>d</i></sub>) using the Nyquist plot fitting method. A liquid electrolyte system with varying concentrations of sodium trifluoromethanesulfonate (NaCF<sub>3</sub>SO<sub>3</sub>) in dimethyl sulfoxide (DMSO) was prepared. The conductivity increased from 1.00 × 10<sup>−2</sup> S cm<sup>−1</sup> (L1 electrolyte containing 0.6 M NaCF<sub>3</sub>SO<sub>3</sub>) to 1.14 × 10<sup>−2</sup> S cm<sup>−1</sup> (L3 electrolyte containing 1.0 M NaCF<sub>3</sub>SO<sub>3</sub>), driven by an increase in <i>n</i> from 6.70 × 10<sup>20</sup> cm<sup>−3</sup> (L1 electrolyte) to 7.43 × 10<sup>20</sup> cm<sup>−3</sup> (L3 electrolyte), indicating increased ion dissociation within the electrolyte. The conductivity decreased to 1.03 × 10<sup>−2</sup> cm<sup>−3</sup> (L4 electrolyte containing 1.2 M NaCF<sub>3</sub>SO<sub>3</sub>) due to decrease in both <i>µ</i> and <i>D</i>, from 9.54 × 10<sup>−5</sup> to 6.94 × 10<sup>−6</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−2</sup> and from 2.47 × 10 to 1.79 × 10<sup>−6</sup> cm<sup>2</sup> s<sup>−1</sup>, respectively, due to the higher availability of free ions in the electrolyte. The <i>F</i><sub><i>d</i></sub> values also increased, indicating increased viscosity and reduced ion movement. These findings suggest that the conductivity variations for DMSO − NaCF<sub>3</sub>SO<sub>3</sub> liquid electrolytes are primarily influenced by <i>µ</i>, <i>D</i>, and <i>F</i><sub><i>d</i></sub>, rather than <i>n</i>.</p></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 4","pages":"3383 - 3390"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating ionic conductivity in DMSO − NaCF3SO3 electrolytes: the role of charge carrier concentration and mobility\",\"authors\":\"N. Shamshurim, N. Tamchek, Pramod K. Singh, I. M. Noor\",\"doi\":\"10.1007/s11581-025-06158-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the factors that influence conductivity changes in electrolyte systems due to salt doping is important for optimizing their performance. This work quantitatively evaluated key transport parameters, namely diffusivity (<i>D</i>), mobility (<i>µ</i>), and concentration (<i>n</i>) of charge carriers, and the Stokes drag coefficient (<i>F</i><sub><i>d</i></sub>) using the Nyquist plot fitting method. A liquid electrolyte system with varying concentrations of sodium trifluoromethanesulfonate (NaCF<sub>3</sub>SO<sub>3</sub>) in dimethyl sulfoxide (DMSO) was prepared. The conductivity increased from 1.00 × 10<sup>−2</sup> S cm<sup>−1</sup> (L1 electrolyte containing 0.6 M NaCF<sub>3</sub>SO<sub>3</sub>) to 1.14 × 10<sup>−2</sup> S cm<sup>−1</sup> (L3 electrolyte containing 1.0 M NaCF<sub>3</sub>SO<sub>3</sub>), driven by an increase in <i>n</i> from 6.70 × 10<sup>20</sup> cm<sup>−3</sup> (L1 electrolyte) to 7.43 × 10<sup>20</sup> cm<sup>−3</sup> (L3 electrolyte), indicating increased ion dissociation within the electrolyte. The conductivity decreased to 1.03 × 10<sup>−2</sup> cm<sup>−3</sup> (L4 electrolyte containing 1.2 M NaCF<sub>3</sub>SO<sub>3</sub>) due to decrease in both <i>µ</i> and <i>D</i>, from 9.54 × 10<sup>−5</sup> to 6.94 × 10<sup>−6</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−2</sup> and from 2.47 × 10 to 1.79 × 10<sup>−6</sup> cm<sup>2</sup> s<sup>−1</sup>, respectively, due to the higher availability of free ions in the electrolyte. The <i>F</i><sub><i>d</i></sub> values also increased, indicating increased viscosity and reduced ion movement. These findings suggest that the conductivity variations for DMSO − NaCF<sub>3</sub>SO<sub>3</sub> liquid electrolytes are primarily influenced by <i>µ</i>, <i>D</i>, and <i>F</i><sub><i>d</i></sub>, rather than <i>n</i>.</p></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"31 4\",\"pages\":\"3383 - 3390\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-025-06158-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-025-06158-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
了解盐掺杂导致电解质系统电导率变化的影响因素对于优化其性能非常重要。本文采用Nyquist图拟合方法定量评估了关键输运参数,即载流子的扩散系数(D)、迁移率(µ)和浓度(n),以及Stokes阻力系数(Fd)。在二甲亚砜(DMSO)中制备了不同浓度的三氟甲磺酸钠(NaCF3SO3)液体电解质体系。电导率从1.00 × 10−2 S cm−1(含0.6 M NaCF3SO3的L1电解质)增加到1.14 × 10−2 S cm−1(含1.0 M NaCF3SO3的L3电解质),这是由于n从6.70 × 1020 cm−3 (L1电解质)增加到7.43 × 1020 cm−3 (L3电解质),表明电解质内离子解离增加。由于µ和D的降低,电导率从9.54 × 10−5降至6.94 × 10−6 cm2 V−1 s−2,由于电解质中自由离子的可用性提高,电导率从2.47 × 10降至1.79 × 10−6 cm2 s−1。Fd值也增加,表明粘度增加,离子运动减少。这些发现表明DMSO−NaCF3SO3液体电解质的电导率变化主要受µ、D和Fd的影响,而不是受n的影响。
Evaluating ionic conductivity in DMSO − NaCF3SO3 electrolytes: the role of charge carrier concentration and mobility
Understanding the factors that influence conductivity changes in electrolyte systems due to salt doping is important for optimizing their performance. This work quantitatively evaluated key transport parameters, namely diffusivity (D), mobility (µ), and concentration (n) of charge carriers, and the Stokes drag coefficient (Fd) using the Nyquist plot fitting method. A liquid electrolyte system with varying concentrations of sodium trifluoromethanesulfonate (NaCF3SO3) in dimethyl sulfoxide (DMSO) was prepared. The conductivity increased from 1.00 × 10−2 S cm−1 (L1 electrolyte containing 0.6 M NaCF3SO3) to 1.14 × 10−2 S cm−1 (L3 electrolyte containing 1.0 M NaCF3SO3), driven by an increase in n from 6.70 × 1020 cm−3 (L1 electrolyte) to 7.43 × 1020 cm−3 (L3 electrolyte), indicating increased ion dissociation within the electrolyte. The conductivity decreased to 1.03 × 10−2 cm−3 (L4 electrolyte containing 1.2 M NaCF3SO3) due to decrease in both µ and D, from 9.54 × 10−5 to 6.94 × 10−6 cm2 V−1 s−2 and from 2.47 × 10 to 1.79 × 10−6 cm2 s−1, respectively, due to the higher availability of free ions in the electrolyte. The Fd values also increased, indicating increased viscosity and reduced ion movement. These findings suggest that the conductivity variations for DMSO − NaCF3SO3 liquid electrolytes are primarily influenced by µ, D, and Fd, rather than n.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.