用探地雷达研究碳酸盐岩水文地质构造

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Anna Rieß, Peter Dietrich
{"title":"用探地雷达研究碳酸盐岩水文地质构造","authors":"Anna Rieß,&nbsp;Peter Dietrich","doi":"10.1007/s12665-025-12162-y","DOIUrl":null,"url":null,"abstract":"<div><p>Carbonate rock aquifers are an important resource in the face of water scarcity. However, groundwater recharge processes are not fully understood in the heterogeneous matrix and fracture system. The shallow epikarst zone is important for drainage, transport and storage and needs to be investigated. Geophysical techniques are promising, particularly ground penetrating radar (GPR) due to its sensitivity to water saturation. To test the potential of GPR, hydrogeological structures were investigated in the Lower Muschelkalk of the Rüdersdorf limestone quarry near Berlin, Germany. A survey field was monitored under three different moisture conditions and the experiments included densely spaced zero offset GPR and common midpoint (CMP) profiles. The analysis focused on EM wave velocities as a proxy for water saturation, which were used for a relative comparison of the results from different methods. The more generic CMP results were significantly higher than the velocities from diffraction hyperbolas, which only represent the very local position. Structural observations from picked reflectors throughout the monitoring contributed to the interpretation. While the matrix appears to be unaffected by water variability, preferential flow paths can be identified. Diffraction hyperbolas may occur at fractured porous zones that preferentially store water and drain towards the bedding planes. Their spatial characteristics suggest that they may be precursors of potential sinkholes. The survey shows how GPR can help to understand hydrological processes in carbonate rock and locate relevant structures for further investigation. The collected dataset provides opportunities for further analysis.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"84 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12665-025-12162-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation of hydrogeological structures in carbonate rock with ground penetrating radar\",\"authors\":\"Anna Rieß,&nbsp;Peter Dietrich\",\"doi\":\"10.1007/s12665-025-12162-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbonate rock aquifers are an important resource in the face of water scarcity. However, groundwater recharge processes are not fully understood in the heterogeneous matrix and fracture system. The shallow epikarst zone is important for drainage, transport and storage and needs to be investigated. Geophysical techniques are promising, particularly ground penetrating radar (GPR) due to its sensitivity to water saturation. To test the potential of GPR, hydrogeological structures were investigated in the Lower Muschelkalk of the Rüdersdorf limestone quarry near Berlin, Germany. A survey field was monitored under three different moisture conditions and the experiments included densely spaced zero offset GPR and common midpoint (CMP) profiles. The analysis focused on EM wave velocities as a proxy for water saturation, which were used for a relative comparison of the results from different methods. The more generic CMP results were significantly higher than the velocities from diffraction hyperbolas, which only represent the very local position. Structural observations from picked reflectors throughout the monitoring contributed to the interpretation. While the matrix appears to be unaffected by water variability, preferential flow paths can be identified. Diffraction hyperbolas may occur at fractured porous zones that preferentially store water and drain towards the bedding planes. Their spatial characteristics suggest that they may be precursors of potential sinkholes. The survey shows how GPR can help to understand hydrological processes in carbonate rock and locate relevant structures for further investigation. The collected dataset provides opportunities for further analysis.</p></div>\",\"PeriodicalId\":542,\"journal\":{\"name\":\"Environmental Earth Sciences\",\"volume\":\"84 8\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12665-025-12162-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Earth Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12665-025-12162-y\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-025-12162-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

碳酸盐岩含水层是水资源短缺的重要资源。然而,地下水在非均质基质-裂缝系统中的补给过程尚未完全了解。浅层表溶岩带具有重要的排、输、储作用,值得研究。地球物理技术是很有前途的,特别是探地雷达(GPR)由于其对含水饱和度的敏感性。为了测试探地雷达的潜力,在德国柏林附近的r德斯多夫石灰石采石场的下Muschelkalk对水文地质结构进行了调查。在三种不同的湿度条件下,对一个调查场进行了监测,实验包括密集间隔零偏移探地雷达和共同中点(CMP)剖面。分析的重点是将电磁波速度作为含水饱和度的代表,并将不同方法的结果进行相对比较。更一般的CMP结果明显高于衍射双曲线的速度,衍射双曲线只代表非常局部的位置。在整个监测过程中,从挑选的反射器中观察到的结构有助于解释。虽然基质似乎不受水变化的影响,但可以确定优先流动路径。衍射双曲线可能出现在裂缝性孔隙区,这些孔隙区优先储存水并向顺层平面排水。它们的空间特征表明它们可能是潜在天坑的前兆。该调查显示了探地雷达如何帮助了解碳酸盐岩的水文过程,并为进一步调查定位相关结构。收集的数据集为进一步分析提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of hydrogeological structures in carbonate rock with ground penetrating radar

Carbonate rock aquifers are an important resource in the face of water scarcity. However, groundwater recharge processes are not fully understood in the heterogeneous matrix and fracture system. The shallow epikarst zone is important for drainage, transport and storage and needs to be investigated. Geophysical techniques are promising, particularly ground penetrating radar (GPR) due to its sensitivity to water saturation. To test the potential of GPR, hydrogeological structures were investigated in the Lower Muschelkalk of the Rüdersdorf limestone quarry near Berlin, Germany. A survey field was monitored under three different moisture conditions and the experiments included densely spaced zero offset GPR and common midpoint (CMP) profiles. The analysis focused on EM wave velocities as a proxy for water saturation, which were used for a relative comparison of the results from different methods. The more generic CMP results were significantly higher than the velocities from diffraction hyperbolas, which only represent the very local position. Structural observations from picked reflectors throughout the monitoring contributed to the interpretation. While the matrix appears to be unaffected by water variability, preferential flow paths can be identified. Diffraction hyperbolas may occur at fractured porous zones that preferentially store water and drain towards the bedding planes. Their spatial characteristics suggest that they may be precursors of potential sinkholes. The survey shows how GPR can help to understand hydrological processes in carbonate rock and locate relevant structures for further investigation. The collected dataset provides opportunities for further analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信