bmof衍生Co3O4/CaO钙离子电池阴极的电化学和离子动力学性能

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2025-02-07 DOI:10.1007/s11581-024-06056-5
Ibnu Syafiq Imaduddin, Siti Rohana Majid, Nurul Hayati Idris, Mohd Arif Dar
{"title":"bmof衍生Co3O4/CaO钙离子电池阴极的电化学和离子动力学性能","authors":"Ibnu Syafiq Imaduddin,&nbsp;Siti Rohana Majid,&nbsp;Nurul Hayati Idris,&nbsp;Mohd Arif Dar","doi":"10.1007/s11581-024-06056-5","DOIUrl":null,"url":null,"abstract":"<div><p>Despite its theoretically appealing potential, the challenge to discover high-performance cathode materials with high energy density and low production cost for calcium-ion batteries (CIBs) remains unsolved. Therefore, this study examines the synthesis and characterization of calcium/cobalt-based oxides derived from bimetallic-organic frameworks (Ca/Co-BMOFs) in calcium-based organic electrolytes. The Ca/Co-BMOF precursors are synthesized using a simple room temperature co-precipitation method and further annealed in an air atmosphere to produce Ca/Co-oxides composites. By modulating the metal ratio in precursor, two MOF-derived metal oxides are produced, namely Co<sub>3</sub>O<sub>4</sub>/CaO and CaCO<sub>3</sub>/Ca<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>. X-ray diffraction (XRD) spectroscopy and field-emission scanning electron microscopy (FESEM) reveal that the modulations of metal in precursor resulted in different bimetallic oxides with structure and morphology variations which influence the Ca<sup>2+</sup> ion kinetics. The ion kinetics analysis reveals that cathode charge storage reactions are surface and diffusion-controlled. CaCO<sub>3</sub>/Ca<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>’s capacitive contributions increase significantly with increasing scan rate, indicating a more dominant surface-controlled mechanism at high scan speeds, contributing to the lower overall electrochemical performance at higher rates. Further, the electrochemical studies demonstrate that nanosphere Co<sub>3</sub>O<sub>4</sub>/CaO produces a competitive specific capacity of 165.56 mAh g<sup>−1</sup> at 250 mA g<sup>−1</sup> and retains 85% of its reversible capacity after 70 cycles at various current densities ranging from 500–2000 mA g<sup>−1</sup>, which is superior to the nanoplate CaCO<sub>3</sub>/Ca<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>. This study highlights the feasibility of metal–organic framework (MOF)-derived metal oxides to be used as cathode materials for CIB applications.\n</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"31 4","pages":"3451 - 3465"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical and ion-kinetics performances of BMOF-derived Co3O4/CaO cathodes for calcium-ion batteries\",\"authors\":\"Ibnu Syafiq Imaduddin,&nbsp;Siti Rohana Majid,&nbsp;Nurul Hayati Idris,&nbsp;Mohd Arif Dar\",\"doi\":\"10.1007/s11581-024-06056-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite its theoretically appealing potential, the challenge to discover high-performance cathode materials with high energy density and low production cost for calcium-ion batteries (CIBs) remains unsolved. Therefore, this study examines the synthesis and characterization of calcium/cobalt-based oxides derived from bimetallic-organic frameworks (Ca/Co-BMOFs) in calcium-based organic electrolytes. The Ca/Co-BMOF precursors are synthesized using a simple room temperature co-precipitation method and further annealed in an air atmosphere to produce Ca/Co-oxides composites. By modulating the metal ratio in precursor, two MOF-derived metal oxides are produced, namely Co<sub>3</sub>O<sub>4</sub>/CaO and CaCO<sub>3</sub>/Ca<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>. X-ray diffraction (XRD) spectroscopy and field-emission scanning electron microscopy (FESEM) reveal that the modulations of metal in precursor resulted in different bimetallic oxides with structure and morphology variations which influence the Ca<sup>2+</sup> ion kinetics. The ion kinetics analysis reveals that cathode charge storage reactions are surface and diffusion-controlled. CaCO<sub>3</sub>/Ca<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>’s capacitive contributions increase significantly with increasing scan rate, indicating a more dominant surface-controlled mechanism at high scan speeds, contributing to the lower overall electrochemical performance at higher rates. Further, the electrochemical studies demonstrate that nanosphere Co<sub>3</sub>O<sub>4</sub>/CaO produces a competitive specific capacity of 165.56 mAh g<sup>−1</sup> at 250 mA g<sup>−1</sup> and retains 85% of its reversible capacity after 70 cycles at various current densities ranging from 500–2000 mA g<sup>−1</sup>, which is superior to the nanoplate CaCO<sub>3</sub>/Ca<sub>2</sub>Co<sub>2</sub>O<sub>5</sub>. This study highlights the feasibility of metal–organic framework (MOF)-derived metal oxides to be used as cathode materials for CIB applications.\\n</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":\"31 4\",\"pages\":\"3451 - 3465\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11581-024-06056-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-06056-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管理论上具有吸引人的潜力,但为钙离子电池(cib)发现具有高能量密度和低生产成本的高性能正极材料的挑战仍未解决。因此,本研究探讨了钙基有机电解质中由双金属有机框架(Ca/Co-BMOFs)衍生的钙/钴基氧化物的合成和表征。采用简单的室温共沉淀法合成了Ca/Co-BMOF前驱体,并在空气气氛中进一步退火制备了Ca/ co-氧化物复合材料。通过调节前驱体中金属的比例,生成了Co3O4/CaO和CaCO3/Ca2Co2O5两种mof衍生的金属氧化物。x射线衍射(XRD)和场发射扫描电镜(FESEM)分析表明,前驱体中金属的调制导致了不同的双金属氧化物的结构和形态的变化,从而影响了Ca2+离子的动力学。离子动力学分析表明,阴极电荷存储反应受表面和扩散控制。随着扫描速率的增加,CaCO3/Ca2Co2O5的电容贡献显著增加,表明在高扫描速率下,表面控制机制更占主导地位,导致在高扫描速率下整体电化学性能降低。此外,电化学研究表明,纳米球Co3O4/CaO在250 mA g−1下产生165.56 mAh g−1的竞争比容量,在500-2000 mA g−1的不同电流密度下循环70次后仍保持85%的可逆容量,优于纳米板CaCO3/Ca2Co2O5。这项研究强调了金属有机框架(MOF)衍生的金属氧化物作为阴极材料用于CIB应用的可行性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical and ion-kinetics performances of BMOF-derived Co3O4/CaO cathodes for calcium-ion batteries

Despite its theoretically appealing potential, the challenge to discover high-performance cathode materials with high energy density and low production cost for calcium-ion batteries (CIBs) remains unsolved. Therefore, this study examines the synthesis and characterization of calcium/cobalt-based oxides derived from bimetallic-organic frameworks (Ca/Co-BMOFs) in calcium-based organic electrolytes. The Ca/Co-BMOF precursors are synthesized using a simple room temperature co-precipitation method and further annealed in an air atmosphere to produce Ca/Co-oxides composites. By modulating the metal ratio in precursor, two MOF-derived metal oxides are produced, namely Co3O4/CaO and CaCO3/Ca2Co2O5. X-ray diffraction (XRD) spectroscopy and field-emission scanning electron microscopy (FESEM) reveal that the modulations of metal in precursor resulted in different bimetallic oxides with structure and morphology variations which influence the Ca2+ ion kinetics. The ion kinetics analysis reveals that cathode charge storage reactions are surface and diffusion-controlled. CaCO3/Ca2Co2O5’s capacitive contributions increase significantly with increasing scan rate, indicating a more dominant surface-controlled mechanism at high scan speeds, contributing to the lower overall electrochemical performance at higher rates. Further, the electrochemical studies demonstrate that nanosphere Co3O4/CaO produces a competitive specific capacity of 165.56 mAh g−1 at 250 mA g−1 and retains 85% of its reversible capacity after 70 cycles at various current densities ranging from 500–2000 mA g−1, which is superior to the nanoplate CaCO3/Ca2Co2O5. This study highlights the feasibility of metal–organic framework (MOF)-derived metal oxides to be used as cathode materials for CIB applications.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信