利用Rellich函数分析\(\mathbb Z^d\)上Lipschitz单调拟周期Schrödinger算子的局部化

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Hongyi Cao, Yunfeng Shi, Zhifei Zhang
{"title":"利用Rellich函数分析\\(\\mathbb Z^d\\)上Lipschitz单调拟周期Schrödinger算子的局部化","authors":"Hongyi Cao,&nbsp;Yunfeng Shi,&nbsp;Zhifei Zhang","doi":"10.1007/s00220-025-05288-4","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the Anderson localization and exponential dynamical localization for a class of quasi-periodic Schrödinger operators on <span>\\(\\mathbb Z^d\\)</span> with bounded or unbounded Lipschitz monotone potentials via multi-scale analysis based on Rellich function analysis in the perturbative regime. We show that at each scale, the resonant Rellich function uniformly inherits the Lipschitz monotonicity property of the potential via a novel Schur complement argument.\n</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization for Lipschitz Monotone Quasi-periodic Schrödinger Operators on \\\\(\\\\mathbb Z^d\\\\) via Rellich Functions Analysis\",\"authors\":\"Hongyi Cao,&nbsp;Yunfeng Shi,&nbsp;Zhifei Zhang\",\"doi\":\"10.1007/s00220-025-05288-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish the Anderson localization and exponential dynamical localization for a class of quasi-periodic Schrödinger operators on <span>\\\\(\\\\mathbb Z^d\\\\)</span> with bounded or unbounded Lipschitz monotone potentials via multi-scale analysis based on Rellich function analysis in the perturbative regime. We show that at each scale, the resonant Rellich function uniformly inherits the Lipschitz monotonicity property of the potential via a novel Schur complement argument.\\n</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05288-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05288-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在多尺度分析的基础上,基于Rellich函数分析,建立了\(\mathbb Z^d\)上一类具有有界或无界Lipschitz单调势的拟周期Schrödinger算子的Anderson局部化和指数动态局部化。我们通过一种新颖的Schur补论证证明了在每个尺度下,共振Rellich函数一致地继承了势的Lipschitz单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localization for Lipschitz Monotone Quasi-periodic Schrödinger Operators on \(\mathbb Z^d\) via Rellich Functions Analysis

We establish the Anderson localization and exponential dynamical localization for a class of quasi-periodic Schrödinger operators on \(\mathbb Z^d\) with bounded or unbounded Lipschitz monotone potentials via multi-scale analysis based on Rellich function analysis in the perturbative regime. We show that at each scale, the resonant Rellich function uniformly inherits the Lipschitz monotonicity property of the potential via a novel Schur complement argument.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信