q-内禀和更高量子Capelli恒等式

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Naihuan Jing, Ming Liu, Alexander Molev
{"title":"q-内禀和更高量子Capelli恒等式","authors":"Naihuan Jing,&nbsp;Ming Liu,&nbsp;Alexander Molev","doi":"10.1007/s00220-025-05273-x","DOIUrl":null,"url":null,"abstract":"<div><p>We construct polynomials <span>\\(\\mathbb {S}_{\\mu }(z)\\)</span> parameterized by Young diagrams <span>\\(\\mu \\)</span>, whose coefficients are central elements of the quantized enveloping algebra <span>\\(\\textrm{U}_q(\\mathfrak {gl}_n)\\)</span>. Their constant terms coincide with the central elements provided by the general construction of Drinfeld and Reshetikhin. For another special value of <i>z</i>, we get <i>q</i>-analogues of Okounkov’s quantum immanants for <span>\\(\\mathfrak {gl}_n\\)</span>. We show that the Harish-Chandra image of <span>\\(\\mathbb {S}_{\\mu }(z)\\)</span> is a factorial Schur polynomial. We derive quantum analogues of the higher Capelli identities by calculating the images of the <i>q</i>-immanants in the braided Weyl algebra. We also give a symmetric function interpretation and new proof of the Newton identities of Gurevich, Pyatov and Saponov.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05273-x.pdf","citationCount":"0","resultStr":"{\"title\":\"The q-Immanants and Higher Quantum Capelli Identities\",\"authors\":\"Naihuan Jing,&nbsp;Ming Liu,&nbsp;Alexander Molev\",\"doi\":\"10.1007/s00220-025-05273-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct polynomials <span>\\\\(\\\\mathbb {S}_{\\\\mu }(z)\\\\)</span> parameterized by Young diagrams <span>\\\\(\\\\mu \\\\)</span>, whose coefficients are central elements of the quantized enveloping algebra <span>\\\\(\\\\textrm{U}_q(\\\\mathfrak {gl}_n)\\\\)</span>. Their constant terms coincide with the central elements provided by the general construction of Drinfeld and Reshetikhin. For another special value of <i>z</i>, we get <i>q</i>-analogues of Okounkov’s quantum immanants for <span>\\\\(\\\\mathfrak {gl}_n\\\\)</span>. We show that the Harish-Chandra image of <span>\\\\(\\\\mathbb {S}_{\\\\mu }(z)\\\\)</span> is a factorial Schur polynomial. We derive quantum analogues of the higher Capelli identities by calculating the images of the <i>q</i>-immanants in the braided Weyl algebra. We also give a symmetric function interpretation and new proof of the Newton identities of Gurevich, Pyatov and Saponov.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05273-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05273-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05273-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了多项式\(\mathbb {S}_{\mu }(z)\)参数化的杨图\(\mu \),其系数是量化包络代数\(\textrm{U}_q(\mathfrak {gl}_n)\)的中心元素。它们的常数项与德林菲尔德和雷谢季欣的总体结构所提供的中心要素相吻合。对于z的另一个特殊值,我们得到了\(\mathfrak {gl}_n\)的Okounkov量子内在量的q-类似物。我们证明了\(\mathbb {S}_{\mu }(z)\)的Harish-Chandra图像是一个阶乘Schur多项式。我们通过计算编织Weyl代数中q-内变子的像,推导出了高Capelli恒等式的量子类似物。对Gurevich、Pyatov和Saponov的牛顿恒等式给出了对称函数的解释和新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The q-Immanants and Higher Quantum Capelli Identities

We construct polynomials \(\mathbb {S}_{\mu }(z)\) parameterized by Young diagrams \(\mu \), whose coefficients are central elements of the quantized enveloping algebra \(\textrm{U}_q(\mathfrak {gl}_n)\). Their constant terms coincide with the central elements provided by the general construction of Drinfeld and Reshetikhin. For another special value of z, we get q-analogues of Okounkov’s quantum immanants for \(\mathfrak {gl}_n\). We show that the Harish-Chandra image of \(\mathbb {S}_{\mu }(z)\) is a factorial Schur polynomial. We derive quantum analogues of the higher Capelli identities by calculating the images of the q-immanants in the braided Weyl algebra. We also give a symmetric function interpretation and new proof of the Newton identities of Gurevich, Pyatov and Saponov.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信