开谐过程的大偏差与可加性原理

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Gioia Carinci, Chiara Franceschini, Rouven Frassek, Cristian Giardinà, Frank Redig
{"title":"开谐过程的大偏差与可加性原理","authors":"Gioia Carinci,&nbsp;Chiara Franceschini,&nbsp;Rouven Frassek,&nbsp;Cristian Giardinà,&nbsp;Frank Redig","doi":"10.1007/s00220-025-05271-z","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the boundary driven harmonic model, i.e. the Markov process associated to the open integrable XXX chain with non-compact spins. We characterize its stationary measure as a mixture of product measures. For all spin values, we identify the law of the mixture in terms of the Dirichlet process. Next, by using the explicit knowledge of the non-equilibrium steady state we establish formulas predicted by Macroscopic Fluctuation Theory for several quantities of interest: the pressure (by Varadhan’s lemma), the density large deviation function (by contraction principle), the additivity principle (by using the Markov property of the mixing law). To our knowledge, the results presented in this paper constitute the first rigorous derivation of these macroscopic properties for models of energy transport with unbounded state space, starting from the microscopic structure of the non-equilibrium steady state.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00220-025-05271-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Large Deviations and Additivity Principle for the Open Harmonic Process\",\"authors\":\"Gioia Carinci,&nbsp;Chiara Franceschini,&nbsp;Rouven Frassek,&nbsp;Cristian Giardinà,&nbsp;Frank Redig\",\"doi\":\"10.1007/s00220-025-05271-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the boundary driven harmonic model, i.e. the Markov process associated to the open integrable XXX chain with non-compact spins. We characterize its stationary measure as a mixture of product measures. For all spin values, we identify the law of the mixture in terms of the Dirichlet process. Next, by using the explicit knowledge of the non-equilibrium steady state we establish formulas predicted by Macroscopic Fluctuation Theory for several quantities of interest: the pressure (by Varadhan’s lemma), the density large deviation function (by contraction principle), the additivity principle (by using the Markov property of the mixing law). To our knowledge, the results presented in this paper constitute the first rigorous derivation of these macroscopic properties for models of energy transport with unbounded state space, starting from the microscopic structure of the non-equilibrium steady state.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00220-025-05271-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-025-05271-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-025-05271-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

考虑了具有非紧自旋的开可积XXX链的边界驱动调和模型,即马尔可夫过程。我们把它的平稳测度描述为乘积测度的混合。对于所有的自旋值,我们用狄利克雷过程来确定混合物的规律。接下来,通过使用非平衡稳态的显式知识,我们建立了由宏观涨落理论预测的几个感兴趣的量的公式:压力(通过Varadhan引理),密度大偏差函数(通过收缩原理),可加性原理(通过使用混合定律的马尔可夫性质)。据我们所知,本文的结果首次从非平衡稳态的微观结构出发,对具有无界状态空间的能量输运模型的这些宏观性质进行了严格的推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Deviations and Additivity Principle for the Open Harmonic Process

We consider the boundary driven harmonic model, i.e. the Markov process associated to the open integrable XXX chain with non-compact spins. We characterize its stationary measure as a mixture of product measures. For all spin values, we identify the law of the mixture in terms of the Dirichlet process. Next, by using the explicit knowledge of the non-equilibrium steady state we establish formulas predicted by Macroscopic Fluctuation Theory for several quantities of interest: the pressure (by Varadhan’s lemma), the density large deviation function (by contraction principle), the additivity principle (by using the Markov property of the mixing law). To our knowledge, the results presented in this paper constitute the first rigorous derivation of these macroscopic properties for models of energy transport with unbounded state space, starting from the microscopic structure of the non-equilibrium steady state.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信