常数大小的量子关联的隶属性问题是不可判定的

IF 2.2 1区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Honghao Fu, Carl A. Miller, William Slofstra
{"title":"常数大小的量子关联的隶属性问题是不可判定的","authors":"Honghao Fu,&nbsp;Carl A. Miller,&nbsp;William Slofstra","doi":"10.1007/s00220-024-05229-7","DOIUrl":null,"url":null,"abstract":"<div><p>When two spatially separated parties make measurements on an unknown entangled quantum state, what correlations can they achieve? How difficult is it to determine whether a given correlation is a quantum correlation? These questions are central to problems in quantum communication and computation. Previous work has shown that the general membership problem for quantum correlations is computationally undecidable. In the current work we show something stronger: there is a family of constant-sized correlations—that is, correlations for which the number of measurements and number of measurement outcomes are fixed—such that solving the quantum membership problem for this family is computationally impossible. Thus, the undecidability that arises in understanding Bell experiments is not dependent on varying the number of measurements in the experiment. This places strong constraints on the types of descriptions that can be given for quantum correlation sets. Our proof is based on a combination of techniques from quantum self-testing and undecidability results for linear system nonlocal games.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"406 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Membership Problem for Constant-Sized Quantum Correlations is Undecidable\",\"authors\":\"Honghao Fu,&nbsp;Carl A. Miller,&nbsp;William Slofstra\",\"doi\":\"10.1007/s00220-024-05229-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>When two spatially separated parties make measurements on an unknown entangled quantum state, what correlations can they achieve? How difficult is it to determine whether a given correlation is a quantum correlation? These questions are central to problems in quantum communication and computation. Previous work has shown that the general membership problem for quantum correlations is computationally undecidable. In the current work we show something stronger: there is a family of constant-sized correlations—that is, correlations for which the number of measurements and number of measurement outcomes are fixed—such that solving the quantum membership problem for this family is computationally impossible. Thus, the undecidability that arises in understanding Bell experiments is not dependent on varying the number of measurements in the experiment. This places strong constraints on the types of descriptions that can be given for quantum correlation sets. Our proof is based on a combination of techniques from quantum self-testing and undecidability results for linear system nonlocal games.</p></div>\",\"PeriodicalId\":522,\"journal\":{\"name\":\"Communications in Mathematical Physics\",\"volume\":\"406 5\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00220-024-05229-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05229-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

当两个空间分离的当事方对一个未知的纠缠量子态进行测量时,他们可以获得什么样的相关性?确定一个给定的相关是否为量子相关有多难?这些问题是量子通信和计算问题的核心。先前的工作表明,量子相关的一般隶属性问题在计算上是不可确定的。在目前的工作中,我们展示了一些更强的东西:有一个恒定大小的相关族——也就是说,测量的数量和测量结果的数量是固定的——这样解决这个家族的量子隶属性问题在计算上是不可能的。因此,在理解贝尔实验时产生的不确定性并不依赖于实验中测量次数的变化。这对量子相关集的描述类型有很强的限制。我们的证明是基于量子自测试技术和线性系统非局部对策的不可判定结果的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Membership Problem for Constant-Sized Quantum Correlations is Undecidable

When two spatially separated parties make measurements on an unknown entangled quantum state, what correlations can they achieve? How difficult is it to determine whether a given correlation is a quantum correlation? These questions are central to problems in quantum communication and computation. Previous work has shown that the general membership problem for quantum correlations is computationally undecidable. In the current work we show something stronger: there is a family of constant-sized correlations—that is, correlations for which the number of measurements and number of measurement outcomes are fixed—such that solving the quantum membership problem for this family is computationally impossible. Thus, the undecidability that arises in understanding Bell experiments is not dependent on varying the number of measurements in the experiment. This places strong constraints on the types of descriptions that can be given for quantum correlation sets. Our proof is based on a combination of techniques from quantum self-testing and undecidability results for linear system nonlocal games.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Physics
Communications in Mathematical Physics 物理-物理:数学物理
CiteScore
4.70
自引率
8.30%
发文量
226
审稿时长
3-6 weeks
期刊介绍: The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信