马尔可夫过程中一般电流的有效亲和力

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Adarsh Raghu, Izaak Neri
{"title":"马尔可夫过程中一般电流的有效亲和力","authors":"Adarsh Raghu,&nbsp;Izaak Neri","doi":"10.1007/s10955-025-03433-w","DOIUrl":null,"url":null,"abstract":"<div><p>In nonequilibrium systems with uncoupled currents, the thermodynamic affinity determines the direction of currents, quantifies dissipation, and constrains current fluctuations. However, these properties of the thermodynamic affinity do not hold in complex systems with multiple coupled currents. For this reason, there has been an ongoing search in nonequilibrium thermodynamics for an affinity-like quantity, known as the effective affinity, which applies to a single current in a system with multiple coupled currents. Here, we introduce an effective affinity that applies to generic currents in time-homogeneous Markov processes. We show that the effective affinity is a single number encapsulating several dissipative and fluctuation properties of fluctuating currents: the effective affinity determines the direction of flow of the current; the effective affinity multiplied by the current is a lower bound for the rate of dissipation; for systems with uncoupled currents the effective affinity equals the standard thermodynamic affinity; and the effective affinity constrains negative fluctuations of currents, namely, it is the exponential decay constant of the distribution of current infima. We derive the above properties with large deviation theory and martingale theory, and one particular interesting finding is a class of martingales associated with generic currents. Furthermore, we make a study of the relation between effective affinities and stalling forces in a biomechanical model of motor proteins, and we find that both quantities are approximately equal when this particular model is thermodynamically consistent. This brings interesting perspectives on the use of stalling forces for the estimation of dissipation.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03433-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Effective Affinity for Generic Currents in Markov Processes\",\"authors\":\"Adarsh Raghu,&nbsp;Izaak Neri\",\"doi\":\"10.1007/s10955-025-03433-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In nonequilibrium systems with uncoupled currents, the thermodynamic affinity determines the direction of currents, quantifies dissipation, and constrains current fluctuations. However, these properties of the thermodynamic affinity do not hold in complex systems with multiple coupled currents. For this reason, there has been an ongoing search in nonequilibrium thermodynamics for an affinity-like quantity, known as the effective affinity, which applies to a single current in a system with multiple coupled currents. Here, we introduce an effective affinity that applies to generic currents in time-homogeneous Markov processes. We show that the effective affinity is a single number encapsulating several dissipative and fluctuation properties of fluctuating currents: the effective affinity determines the direction of flow of the current; the effective affinity multiplied by the current is a lower bound for the rate of dissipation; for systems with uncoupled currents the effective affinity equals the standard thermodynamic affinity; and the effective affinity constrains negative fluctuations of currents, namely, it is the exponential decay constant of the distribution of current infima. We derive the above properties with large deviation theory and martingale theory, and one particular interesting finding is a class of martingales associated with generic currents. Furthermore, we make a study of the relation between effective affinities and stalling forces in a biomechanical model of motor proteins, and we find that both quantities are approximately equal when this particular model is thermodynamically consistent. This brings interesting perspectives on the use of stalling forces for the estimation of dissipation.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10955-025-03433-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03433-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03433-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在具有不耦合电流的非平衡系统中,热力学亲和决定了电流的方向,量化了耗散,并限制了电流的波动。然而,热力学亲和的这些性质在具有多个耦合电流的复杂系统中并不成立。由于这个原因,在非平衡热力学中一直在寻找一种类似亲和力的量,称为有效亲和力,它适用于具有多个耦合电流的系统中的单个电流。在这里,我们引入了一种适用于时间齐次马尔可夫过程中一般电流的有效亲和力。我们证明了有效亲和力是一个单一的数字,封装了波动电流的几个耗散和波动特性:有效亲和力决定了电流的流动方向;有效亲和力乘以电流是耗散率的下界;对于电流不耦合的系统,有效亲和等于标准热力学亲和;有效亲和力约束了电流的负波动,即它是电流无限分布的指数衰减常数。我们用大偏差理论和鞅理论推导了上述性质,其中一个特别有趣的发现是一类与一般电流相关的鞅。此外,我们在运动蛋白的生物力学模型中研究了有效亲和力和失速力之间的关系,我们发现当这个特定的模型是热力学一致的时候,这两个量是近似相等的。这为利用失速力估计耗散带来了有趣的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Affinity for Generic Currents in Markov Processes

In nonequilibrium systems with uncoupled currents, the thermodynamic affinity determines the direction of currents, quantifies dissipation, and constrains current fluctuations. However, these properties of the thermodynamic affinity do not hold in complex systems with multiple coupled currents. For this reason, there has been an ongoing search in nonequilibrium thermodynamics for an affinity-like quantity, known as the effective affinity, which applies to a single current in a system with multiple coupled currents. Here, we introduce an effective affinity that applies to generic currents in time-homogeneous Markov processes. We show that the effective affinity is a single number encapsulating several dissipative and fluctuation properties of fluctuating currents: the effective affinity determines the direction of flow of the current; the effective affinity multiplied by the current is a lower bound for the rate of dissipation; for systems with uncoupled currents the effective affinity equals the standard thermodynamic affinity; and the effective affinity constrains negative fluctuations of currents, namely, it is the exponential decay constant of the distribution of current infima. We derive the above properties with large deviation theory and martingale theory, and one particular interesting finding is a class of martingales associated with generic currents. Furthermore, we make a study of the relation between effective affinities and stalling forces in a biomechanical model of motor proteins, and we find that both quantities are approximately equal when this particular model is thermodynamically consistent. This brings interesting perspectives on the use of stalling forces for the estimation of dissipation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信