金红石制锐钛矿的高性价比转化及Zn₂Ti₃O₈的合成

IF 2.2 4区 化学 Q2 Engineering
Ahmed Draoui, Zoulikha Hebboul, Saad Boudabia, Ibn Khaldoun Lefkaier, Mohammed Elhabib Naidjate, Abdeldjabbar Belbel, Hanane Aroudji, Aya Mokhtari, Souraya Goumri-Said
{"title":"金红石制锐钛矿的高性价比转化及Zn₂Ti₃O₈的合成","authors":"Ahmed Draoui,&nbsp;Zoulikha Hebboul,&nbsp;Saad Boudabia,&nbsp;Ibn Khaldoun Lefkaier,&nbsp;Mohammed Elhabib Naidjate,&nbsp;Abdeldjabbar Belbel,&nbsp;Hanane Aroudji,&nbsp;Aya Mokhtari,&nbsp;Souraya Goumri-Said","doi":"10.1007/s11696-025-03915-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents two groundbreaking achievements in materials science with significant implications for advanced technologies. First, we report the successful mechanosynthesis of Zn₂Ti₃O₈ through a solvent-free, solid-state reaction between rutile-type TiO₂ and ZnO, yielding the compound after 8 hours of milling. Second, we demonstrate a novel reverse phase conversion of TiO₂ from rutile to anatase under extreme conditions, involving a highly alkaline (KOH) environment at 160 °C, followed by hydrothermal treatment and calcination at 850 °C. This unprecedented transformation enhances the anatase phase’s morphological, optical, and surface properties, offering substantial advantages for various applications. Comprehensive characterization using X-ray diffraction, UV–Vis, and FT-IR spectroscopy revealed crucial insights into the materials' structural and optical properties. Notably, bandgap energies estimated from Tauc plots showed a systematic decrease with increasing reaction time, ranging from 3.54 to 3.49 eV for 2 to 10 hours, respectively. Our findings contribute significantly to the field by introducing an environmentally friendly Zn₂Ti₃O₈ synthesis route, challenging conventional phase stability understanding, and providing a method for precise bandgap control. This research not only advances fundamental knowledge but also opens new avenues for developing high-performance materials in energy and environmental applications, potentially revolutionizing next-generation technologies.</p></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"79 4","pages":"2177 - 2189"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-effective transformation of rutile to anatase and synthesis of Zn₂Ti₃O₈\",\"authors\":\"Ahmed Draoui,&nbsp;Zoulikha Hebboul,&nbsp;Saad Boudabia,&nbsp;Ibn Khaldoun Lefkaier,&nbsp;Mohammed Elhabib Naidjate,&nbsp;Abdeldjabbar Belbel,&nbsp;Hanane Aroudji,&nbsp;Aya Mokhtari,&nbsp;Souraya Goumri-Said\",\"doi\":\"10.1007/s11696-025-03915-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents two groundbreaking achievements in materials science with significant implications for advanced technologies. First, we report the successful mechanosynthesis of Zn₂Ti₃O₈ through a solvent-free, solid-state reaction between rutile-type TiO₂ and ZnO, yielding the compound after 8 hours of milling. Second, we demonstrate a novel reverse phase conversion of TiO₂ from rutile to anatase under extreme conditions, involving a highly alkaline (KOH) environment at 160 °C, followed by hydrothermal treatment and calcination at 850 °C. This unprecedented transformation enhances the anatase phase’s morphological, optical, and surface properties, offering substantial advantages for various applications. Comprehensive characterization using X-ray diffraction, UV–Vis, and FT-IR spectroscopy revealed crucial insights into the materials' structural and optical properties. Notably, bandgap energies estimated from Tauc plots showed a systematic decrease with increasing reaction time, ranging from 3.54 to 3.49 eV for 2 to 10 hours, respectively. Our findings contribute significantly to the field by introducing an environmentally friendly Zn₂Ti₃O₈ synthesis route, challenging conventional phase stability understanding, and providing a method for precise bandgap control. This research not only advances fundamental knowledge but also opens new avenues for developing high-performance materials in energy and environmental applications, potentially revolutionizing next-generation technologies.</p></div>\",\"PeriodicalId\":513,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":\"79 4\",\"pages\":\"2177 - 2189\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-025-03915-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-025-03915-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了两项突破性的材料科学成果,对先进技术具有重要意义。首先,我们报道了金红石型TiO₂和ZnO通过无溶剂的固态反应成功地机械合成了Zn₂Ti₃O₈,经过8小时的研磨得到了该化合物。其次,我们展示了在极端条件下,从金红石到锐钛矿的TiO 2的新反相转化,包括160°C的高碱性(KOH)环境,然后是水热处理和850°C的煅烧。这种前所未有的转变增强了锐钛矿相的形态、光学和表面性质,为各种应用提供了实质性的优势。利用x射线衍射、UV-Vis和FT-IR光谱进行综合表征,揭示了对材料结构和光学性质的重要见解。值得注意的是,从Tauc图中估计的带隙能量随着反应时间的增加呈现出系统的下降,在2到10小时内分别从3.54到3.49 eV不等。我们的研究结果通过引入环保的Zn₂Ti₃O₈合成路线,挑战了传统的相稳定性理解,并提供了一种精确的带隙控制方法,为该领域做出了重大贡献。这项研究不仅推进了基础知识,而且为开发能源和环境应用中的高性能材料开辟了新的途径,有可能彻底改变下一代技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost-effective transformation of rutile to anatase and synthesis of Zn₂Ti₃O₈

This study presents two groundbreaking achievements in materials science with significant implications for advanced technologies. First, we report the successful mechanosynthesis of Zn₂Ti₃O₈ through a solvent-free, solid-state reaction between rutile-type TiO₂ and ZnO, yielding the compound after 8 hours of milling. Second, we demonstrate a novel reverse phase conversion of TiO₂ from rutile to anatase under extreme conditions, involving a highly alkaline (KOH) environment at 160 °C, followed by hydrothermal treatment and calcination at 850 °C. This unprecedented transformation enhances the anatase phase’s morphological, optical, and surface properties, offering substantial advantages for various applications. Comprehensive characterization using X-ray diffraction, UV–Vis, and FT-IR spectroscopy revealed crucial insights into the materials' structural and optical properties. Notably, bandgap energies estimated from Tauc plots showed a systematic decrease with increasing reaction time, ranging from 3.54 to 3.49 eV for 2 to 10 hours, respectively. Our findings contribute significantly to the field by introducing an environmentally friendly Zn₂Ti₃O₈ synthesis route, challenging conventional phase stability understanding, and providing a method for precise bandgap control. This research not only advances fundamental knowledge but also opens new avenues for developing high-performance materials in energy and environmental applications, potentially revolutionizing next-generation technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Papers
Chemical Papers Chemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍: Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信