胶束模板法制备虾青素核壳结构PLGA纳米颗粒体外缓释及体内长期保肝作用

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Yuan Zhu, Peiqi Lu, Youwu Liao, Michael Adu-Frimpong, Zhihui Zou, Zhou Jin, Chengwei Wang, Min Peng, Houping Peng, Jingze Xu, Ying Xu, Jiangnan Yu, Ximing Xu
{"title":"胶束模板法制备虾青素核壳结构PLGA纳米颗粒体外缓释及体内长期保肝作用","authors":"Yuan Zhu,&nbsp;Peiqi Lu,&nbsp;Youwu Liao,&nbsp;Michael Adu-Frimpong,&nbsp;Zhihui Zou,&nbsp;Zhou Jin,&nbsp;Chengwei Wang,&nbsp;Min Peng,&nbsp;Houping Peng,&nbsp;Jingze Xu,&nbsp;Ying Xu,&nbsp;Jiangnan Yu,&nbsp;Ximing Xu","doi":"10.1007/s11051-025-06301-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to prepare core–shell structural PLGA nanoparticles of astaxanthin (ASTA-PLGA@M) via micelle template for sustained release in vitro and long-term hepatoprotective effects in vivo. The morphology, mean particle size, zeta potential, polydispersity index (PDI), and drug loading efficiency of optimized formulation were investigated. Meanwhile, the physicochemical characterizations including X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) of ASTA-PLGA@M were evaluated to prove the successful encapsulation of astaxanthin. The in vitro release of astaxanthin from ASTA-PLGA@M in four different media was sustained slowly for 120 h. An in vivo release study also demonstrated that ASTA-PLGA@M nanoparticles enhanced oral bioavailability significantly. In addition, the hepatoprotective effects of astaxanthin on oxidative stress (OS) accompanied by apoptosis in acute hepatic damage caused by carbon tetrachloride (CCl<sub>4</sub>) in mice were investigated. ASTA-PLGA@M nanoparticles provide a clear elevating effect on the activity of SOD and inhibit the increase of MDA during acute liver damage caused by CCl4. Moreover, histopathological analysis was conducted to study the long-term hepatoprotective effects of ASTA-PLGA@M for further application of astaxanthin in functional food or clinical use.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Core–shell structural PLGA nanoparticle of astaxanthin fabricated via micelle template for sustained release in vitro and long-term hepatoprotective effect in vivo\",\"authors\":\"Yuan Zhu,&nbsp;Peiqi Lu,&nbsp;Youwu Liao,&nbsp;Michael Adu-Frimpong,&nbsp;Zhihui Zou,&nbsp;Zhou Jin,&nbsp;Chengwei Wang,&nbsp;Min Peng,&nbsp;Houping Peng,&nbsp;Jingze Xu,&nbsp;Ying Xu,&nbsp;Jiangnan Yu,&nbsp;Ximing Xu\",\"doi\":\"10.1007/s11051-025-06301-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aimed to prepare core–shell structural PLGA nanoparticles of astaxanthin (ASTA-PLGA@M) via micelle template for sustained release in vitro and long-term hepatoprotective effects in vivo. The morphology, mean particle size, zeta potential, polydispersity index (PDI), and drug loading efficiency of optimized formulation were investigated. Meanwhile, the physicochemical characterizations including X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) of ASTA-PLGA@M were evaluated to prove the successful encapsulation of astaxanthin. The in vitro release of astaxanthin from ASTA-PLGA@M in four different media was sustained slowly for 120 h. An in vivo release study also demonstrated that ASTA-PLGA@M nanoparticles enhanced oral bioavailability significantly. In addition, the hepatoprotective effects of astaxanthin on oxidative stress (OS) accompanied by apoptosis in acute hepatic damage caused by carbon tetrachloride (CCl<sub>4</sub>) in mice were investigated. ASTA-PLGA@M nanoparticles provide a clear elevating effect on the activity of SOD and inhibit the increase of MDA during acute liver damage caused by CCl4. Moreover, histopathological analysis was conducted to study the long-term hepatoprotective effects of ASTA-PLGA@M for further application of astaxanthin in functional food or clinical use.</p></div>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11051-025-06301-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06301-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过胶束模板法制备虾青素(ASTA-PLGA@M)核壳结构的PLGA纳米颗粒,使其具有体外缓释和体内长期保肝作用。考察了优化后配方的形貌、平均粒径、zeta电位、多分散指数(PDI)和载药效率。同时,对ASTA-PLGA@M进行了x射线衍射(XRD)和衰减全反射-傅里叶变换红外(ATR-FTIR)等理化表征,证明虾青素包封成功。ASTA-PLGA@M中虾青素在四种不同介质中的体外释放缓慢持续120小时。体内释放研究也表明ASTA-PLGA@M纳米颗粒可显著提高口服生物利用度。此外,还研究了虾青素对四氯化碳(CCl4)致小鼠急性肝损伤氧化应激(OS)伴细胞凋亡的保护作用。ASTA-PLGA@M纳米颗粒在CCl4引起的急性肝损伤中对SOD活性有明显的提高作用,并抑制MDA的增加。并通过组织病理学分析研究ASTA-PLGA@M对肝脏的长期保护作用,为虾青素在功能性食品中的进一步应用或临床应用提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Core–shell structural PLGA nanoparticle of astaxanthin fabricated via micelle template for sustained release in vitro and long-term hepatoprotective effect in vivo

This study aimed to prepare core–shell structural PLGA nanoparticles of astaxanthin (ASTA-PLGA@M) via micelle template for sustained release in vitro and long-term hepatoprotective effects in vivo. The morphology, mean particle size, zeta potential, polydispersity index (PDI), and drug loading efficiency of optimized formulation were investigated. Meanwhile, the physicochemical characterizations including X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) of ASTA-PLGA@M were evaluated to prove the successful encapsulation of astaxanthin. The in vitro release of astaxanthin from ASTA-PLGA@M in four different media was sustained slowly for 120 h. An in vivo release study also demonstrated that ASTA-PLGA@M nanoparticles enhanced oral bioavailability significantly. In addition, the hepatoprotective effects of astaxanthin on oxidative stress (OS) accompanied by apoptosis in acute hepatic damage caused by carbon tetrachloride (CCl4) in mice were investigated. ASTA-PLGA@M nanoparticles provide a clear elevating effect on the activity of SOD and inhibit the increase of MDA during acute liver damage caused by CCl4. Moreover, histopathological analysis was conducted to study the long-term hepatoprotective effects of ASTA-PLGA@M for further application of astaxanthin in functional food or clinical use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信