新型异烟肼嵌入1,3,4-恶二唑杂合物作为抗结核、抗氧化和COX抑制剂的探索:合成、光谱分析和分子模型研究

IF 2.2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
S. P. Jisha, G. Y. Nagesh, Prashantha Karunakar, G. Nidhi, B. T. Sridhar, S. M. Basavarajaiah
{"title":"新型异烟肼嵌入1,3,4-恶二唑杂合物作为抗结核、抗氧化和COX抑制剂的探索:合成、光谱分析和分子模型研究","authors":"S. P. Jisha,&nbsp;G. Y. Nagesh,&nbsp;Prashantha Karunakar,&nbsp;G. Nidhi,&nbsp;B. T. Sridhar,&nbsp;S. M. Basavarajaiah","doi":"10.1007/s13738-025-03179-y","DOIUrl":null,"url":null,"abstract":"<div><p>A series of novel 2-(chloromethyl)-5-(pyridin-4-yl)-1,3,4-oxadiazole (3a-h) derivatives have been synthesized as potential anti-TB, antioxidant, and COX inhibitors. The structure of these derivatives is confirmed by the IR, NMR (<sup>1</sup>H and <sup>13</sup>C), and mass spectral analysis. All the newly synthesized derivatives were evaluated for their physicochemical properties by Swiss ADME. Based on our previous work and structural activity relationship study, foresaid isoniazid derivatives were evaluated for in vitro anti-TB, antioxidant, and COX inhibitory activity. The compound 3f exhibited outstanding anti-TB activity with a MIC value of 0.8 μg/mL. The compounds 3d, 3f, and 3h proved promising antioxidant activity at a concentration of 10 μg/ml with inhibition rates of 66.12%, 67.59%, and 66.28%, respectively. The compounds 3e, 3f, and 3h established excellent COX-I inhibitions with IC<sub>50</sub> values of 4.21, 3.24, and 4.89 μM compared to standard drugs. Finally, the molecular docking studies carried out with <i>Mycobacterium tuberculosis</i> enoyl reductase (INHA) complexed with 1-cyclohexyl-<i>N</i>-(3,5-dichlorophenyl)-5-oxopyrrolidine-3-carboxamide (PDB ID: 4TZK), cytochrome c peroxidase (PDB ID: 2X08), and cyclooxygenase-2 (PDB ID: 6COX) for all the newly synthesized derivatives.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"22 4","pages":"717 - 731"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploration of novel isoniazid embedded 1,3,4-oxadiazole hybrids as anti-TB, antioxidant, and COX inhibitors: synthesis, spectral analysis, and molecular modeling studies\",\"authors\":\"S. P. Jisha,&nbsp;G. Y. Nagesh,&nbsp;Prashantha Karunakar,&nbsp;G. Nidhi,&nbsp;B. T. Sridhar,&nbsp;S. M. Basavarajaiah\",\"doi\":\"10.1007/s13738-025-03179-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A series of novel 2-(chloromethyl)-5-(pyridin-4-yl)-1,3,4-oxadiazole (3a-h) derivatives have been synthesized as potential anti-TB, antioxidant, and COX inhibitors. The structure of these derivatives is confirmed by the IR, NMR (<sup>1</sup>H and <sup>13</sup>C), and mass spectral analysis. All the newly synthesized derivatives were evaluated for their physicochemical properties by Swiss ADME. Based on our previous work and structural activity relationship study, foresaid isoniazid derivatives were evaluated for in vitro anti-TB, antioxidant, and COX inhibitory activity. The compound 3f exhibited outstanding anti-TB activity with a MIC value of 0.8 μg/mL. The compounds 3d, 3f, and 3h proved promising antioxidant activity at a concentration of 10 μg/ml with inhibition rates of 66.12%, 67.59%, and 66.28%, respectively. The compounds 3e, 3f, and 3h established excellent COX-I inhibitions with IC<sub>50</sub> values of 4.21, 3.24, and 4.89 μM compared to standard drugs. Finally, the molecular docking studies carried out with <i>Mycobacterium tuberculosis</i> enoyl reductase (INHA) complexed with 1-cyclohexyl-<i>N</i>-(3,5-dichlorophenyl)-5-oxopyrrolidine-3-carboxamide (PDB ID: 4TZK), cytochrome c peroxidase (PDB ID: 2X08), and cyclooxygenase-2 (PDB ID: 6COX) for all the newly synthesized derivatives.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":676,\"journal\":{\"name\":\"Journal of the Iranian Chemical Society\",\"volume\":\"22 4\",\"pages\":\"717 - 731\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Iranian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13738-025-03179-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-025-03179-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合成了一系列新的2-(氯甲基)-5-(吡啶-4-基)-1,3,4-恶二唑(3a-h)衍生物,作为潜在的抗结核、抗氧化和COX抑制剂。这些衍生物的结构经IR、NMR (1H和13C)和质谱分析证实。所有新合成的衍生物均通过瑞士ADME进行了理化性质评价。基于我们之前的工作和构效关系研究,我们对上述异烟肼衍生物进行了体外抗结核、抗氧化和抑制COX活性的评价。化合物3f具有较强的抗结核活性,MIC值为0.8 μg/mL。化合物3d、3f和3h在10 μg/ml浓度下表现出良好的抗氧化活性,抑制率分别为66.12%、67.59%和66.28%。化合物3e、3f和3h对COX-I具有良好的抑制作用,IC50值分别为4.21、3.24和4.89 μM。最后,对所有新合成的结核分枝杆菌烯酰还原酶(INHA)与1-环己基- n -(3,5-二氯苯基)-5-氧吡咯烷-3-羧酰胺(PDB ID: 4TZK)、细胞色素c过氧化物酶(PDB ID: 2X08)和环氧化酶-2 (PDB ID: 6COX)进行分子对接研究。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploration of novel isoniazid embedded 1,3,4-oxadiazole hybrids as anti-TB, antioxidant, and COX inhibitors: synthesis, spectral analysis, and molecular modeling studies

Exploration of novel isoniazid embedded 1,3,4-oxadiazole hybrids as anti-TB, antioxidant, and COX inhibitors: synthesis, spectral analysis, and molecular modeling studies

A series of novel 2-(chloromethyl)-5-(pyridin-4-yl)-1,3,4-oxadiazole (3a-h) derivatives have been synthesized as potential anti-TB, antioxidant, and COX inhibitors. The structure of these derivatives is confirmed by the IR, NMR (1H and 13C), and mass spectral analysis. All the newly synthesized derivatives were evaluated for their physicochemical properties by Swiss ADME. Based on our previous work and structural activity relationship study, foresaid isoniazid derivatives were evaluated for in vitro anti-TB, antioxidant, and COX inhibitory activity. The compound 3f exhibited outstanding anti-TB activity with a MIC value of 0.8 μg/mL. The compounds 3d, 3f, and 3h proved promising antioxidant activity at a concentration of 10 μg/ml with inhibition rates of 66.12%, 67.59%, and 66.28%, respectively. The compounds 3e, 3f, and 3h established excellent COX-I inhibitions with IC50 values of 4.21, 3.24, and 4.89 μM compared to standard drugs. Finally, the molecular docking studies carried out with Mycobacterium tuberculosis enoyl reductase (INHA) complexed with 1-cyclohexyl-N-(3,5-dichlorophenyl)-5-oxopyrrolidine-3-carboxamide (PDB ID: 4TZK), cytochrome c peroxidase (PDB ID: 2X08), and cyclooxygenase-2 (PDB ID: 6COX) for all the newly synthesized derivatives.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
230
审稿时长
5.6 months
期刊介绍: JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信