{"title":"基于金属有机化学气相沉积-生长石墨烯的柔性和独立式太阳能电池","authors":"Athil S. Al-Ezzi, M. N. M. Ansari, Nadia Tan","doi":"10.1007/s11696-025-03910-2","DOIUrl":null,"url":null,"abstract":"<div><p>The prospective uses of flexible and freestanding solar cells in lightweight, portable, and flexible energy-harvesting systems have attracted a lot of attention over the last few years. Metal organic chemical vapour deposition (MOCVD) stands out as a crucial approach for producing high-quality gallium arsenide (GaAs) films among the different processes used to produce high-performance thin-film solar cells. This review highlights the main growth processes, issues and crucial factors that affect material quality and device efficiency, while it critically investigates the use of MOCVD to produce flexible and freestanding GaAs-based solar cells. The optimization of MOCVD growth conditions, such as substrate selection, precursor flow rates, and temperature control, is given particular attention. The paper also looks at recent developments in remote epitaxy, a promising method that removes the limitations of conventional substrate-lattice matching and facilitates the production of freestanding GaAs films. The review also outlines the main obstacles, such as strain, scalability problems, and material imperfections, and it addresses performance metrics like efficiency and stability. Finally, future research and development efforts are described, with a focus on the necessity of additional growth technique optimization, the investigation of novel substrate materials, and improvements in the marketing of flexible GaAs solar cells.</p></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"79 4","pages":"2019 - 2036"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible and freestanding solar cells based on metal organic chemical vapour deposition- grown graphene\",\"authors\":\"Athil S. Al-Ezzi, M. N. M. Ansari, Nadia Tan\",\"doi\":\"10.1007/s11696-025-03910-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The prospective uses of flexible and freestanding solar cells in lightweight, portable, and flexible energy-harvesting systems have attracted a lot of attention over the last few years. Metal organic chemical vapour deposition (MOCVD) stands out as a crucial approach for producing high-quality gallium arsenide (GaAs) films among the different processes used to produce high-performance thin-film solar cells. This review highlights the main growth processes, issues and crucial factors that affect material quality and device efficiency, while it critically investigates the use of MOCVD to produce flexible and freestanding GaAs-based solar cells. The optimization of MOCVD growth conditions, such as substrate selection, precursor flow rates, and temperature control, is given particular attention. The paper also looks at recent developments in remote epitaxy, a promising method that removes the limitations of conventional substrate-lattice matching and facilitates the production of freestanding GaAs films. The review also outlines the main obstacles, such as strain, scalability problems, and material imperfections, and it addresses performance metrics like efficiency and stability. Finally, future research and development efforts are described, with a focus on the necessity of additional growth technique optimization, the investigation of novel substrate materials, and improvements in the marketing of flexible GaAs solar cells.</p></div>\",\"PeriodicalId\":513,\"journal\":{\"name\":\"Chemical Papers\",\"volume\":\"79 4\",\"pages\":\"2019 - 2036\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Papers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11696-025-03910-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-025-03910-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Flexible and freestanding solar cells based on metal organic chemical vapour deposition- grown graphene
The prospective uses of flexible and freestanding solar cells in lightweight, portable, and flexible energy-harvesting systems have attracted a lot of attention over the last few years. Metal organic chemical vapour deposition (MOCVD) stands out as a crucial approach for producing high-quality gallium arsenide (GaAs) films among the different processes used to produce high-performance thin-film solar cells. This review highlights the main growth processes, issues and crucial factors that affect material quality and device efficiency, while it critically investigates the use of MOCVD to produce flexible and freestanding GaAs-based solar cells. The optimization of MOCVD growth conditions, such as substrate selection, precursor flow rates, and temperature control, is given particular attention. The paper also looks at recent developments in remote epitaxy, a promising method that removes the limitations of conventional substrate-lattice matching and facilitates the production of freestanding GaAs films. The review also outlines the main obstacles, such as strain, scalability problems, and material imperfections, and it addresses performance metrics like efficiency and stability. Finally, future research and development efforts are described, with a focus on the necessity of additional growth technique optimization, the investigation of novel substrate materials, and improvements in the marketing of flexible GaAs solar cells.
Chemical PapersChemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.