基于二值测量的自适应分区卡尔曼滤波的多传感器融合估计

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Shuiqiang Xu;Zhongyao Hu;Zheming Wang;Yuchen Zhang;Bo Chen
{"title":"基于二值测量的自适应分区卡尔曼滤波的多传感器融合估计","authors":"Shuiqiang Xu;Zhongyao Hu;Zheming Wang;Yuchen Zhang;Bo Chen","doi":"10.1109/LCSYS.2025.3554721","DOIUrl":null,"url":null,"abstract":"This letter investigates the state estimation problem under binary sensors with inaccurate thresholds. A method for extracting zonotopic data from an inaccurate threshold model is proposed. The output of this method serves as measurements to construct a centralized zonotopic Kalman Filter (ZKF). By analyzing the characteristics of binary sensors, we further propose a threshold estimation technique to encapsulate the actual threshold within a zonotope. We demonstrate that the captured zonotope becomes increasingly tighter, thereby reducing the uncertainty of the threshold estimation. Additionally, through comparisons of estimation error bounds, we extend the proposed method to the sensor arrangement problem, addressing how to select the number of sensors and their thresholds. Circuit simulations validate the effectiveness of the proposed approach.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"50-55"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Sensor Fusion Estimation Using Adaptive Zonotopic Kalman Filters With Binary Measurements\",\"authors\":\"Shuiqiang Xu;Zhongyao Hu;Zheming Wang;Yuchen Zhang;Bo Chen\",\"doi\":\"10.1109/LCSYS.2025.3554721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter investigates the state estimation problem under binary sensors with inaccurate thresholds. A method for extracting zonotopic data from an inaccurate threshold model is proposed. The output of this method serves as measurements to construct a centralized zonotopic Kalman Filter (ZKF). By analyzing the characteristics of binary sensors, we further propose a threshold estimation technique to encapsulate the actual threshold within a zonotope. We demonstrate that the captured zonotope becomes increasingly tighter, thereby reducing the uncertainty of the threshold estimation. Additionally, through comparisons of estimation error bounds, we extend the proposed method to the sensor arrangement problem, addressing how to select the number of sensors and their thresholds. Circuit simulations validate the effectiveness of the proposed approach.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"50-55\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10938617/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10938617/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了阈值不准确的二值传感器下的状态估计问题。提出了一种从不准确阈值模型中提取分区数据的方法。该方法的输出作为构造集中分区卡尔曼滤波器(ZKF)的测量值。通过分析二值传感器的特点,我们进一步提出了一种阈值估计技术,将实际阈值封装在一个带域内。我们证明了捕获的分区变得越来越紧,从而减少了阈值估计的不确定性。此外,通过对估计误差范围的比较,我们将所提出的方法扩展到传感器布置问题,解决了如何选择传感器数量及其阈值的问题。电路仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Sensor Fusion Estimation Using Adaptive Zonotopic Kalman Filters With Binary Measurements
This letter investigates the state estimation problem under binary sensors with inaccurate thresholds. A method for extracting zonotopic data from an inaccurate threshold model is proposed. The output of this method serves as measurements to construct a centralized zonotopic Kalman Filter (ZKF). By analyzing the characteristics of binary sensors, we further propose a threshold estimation technique to encapsulate the actual threshold within a zonotope. We demonstrate that the captured zonotope becomes increasingly tighter, thereby reducing the uncertainty of the threshold estimation. Additionally, through comparisons of estimation error bounds, we extend the proposed method to the sensor arrangement problem, addressing how to select the number of sensors and their thresholds. Circuit simulations validate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信