代入消去法

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Martin Kreuzer , Lorenzo Robbiano
{"title":"代入消去法","authors":"Martin Kreuzer ,&nbsp;Lorenzo Robbiano","doi":"10.1016/j.jsc.2025.102445","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>K</em> be a field and <span><math><mi>P</mi><mo>=</mo><mi>K</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>. The technique of elimination by substitution is based on discovering a coherently <span><math><mi>Z</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></math></span>-separating tuple of polynomials <span><math><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></math></span> in an ideal <em>I</em>, i.e., on finding polynomials such that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>K</mi><mo>[</mo><mi>X</mi><mo>∖</mo><mi>Z</mi><mo>]</mo></math></span>. Here we elaborate on this technique in the case when <em>P</em> is non-negatively graded. The existence of a coherently <em>Z</em>-separating tuple is reduced to solving several <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-module membership problems. Best separable re-embeddings, i.e., isomorphisms <span><math><mi>P</mi><mo>/</mo><mi>I</mi><mo>⟶</mo><mi>K</mi><mo>[</mo><mi>X</mi><mo>∖</mo><mi>Z</mi><mo>]</mo><mo>/</mo><mo>(</mo><mi>I</mi><mo>∩</mo><mi>K</mi><mo>[</mo><mi>X</mi><mo>∖</mo><mi>Z</mi><mo>]</mo><mo>)</mo></math></span> with maximal #<em>Z</em>, are found degree-by-degree. They turn out to yield optimal re-embeddings in the positively graded case. Viewing <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⟶</mo><mi>P</mi><mo>/</mo><mi>I</mi></math></span> as a fibration over an affine space, we show that its fibers allow optimal <em>Z</em>-separating re-embeddings, and we provide a criterion for a fiber to be isomorphic to an affine space. In the last section we introduce a new technique based on the solution of a unimodular matrix problem which enables us to construct automorphisms of <em>P</em> such that additional <em>Z</em>-separating re-embeddings are possible. One of the main outcomes is an algorithm which allows us to explicitly compute a homogeneous isomorphism between <span><math><mi>P</mi><mo>/</mo><mi>I</mi></math></span> and a non-negatively graded polynomial ring if <span><math><mi>P</mi><mo>/</mo><mi>I</mi></math></span> is regular.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"131 ","pages":"Article 102445"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elimination by substitution\",\"authors\":\"Martin Kreuzer ,&nbsp;Lorenzo Robbiano\",\"doi\":\"10.1016/j.jsc.2025.102445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>K</em> be a field and <span><math><mi>P</mi><mo>=</mo><mi>K</mi><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>]</mo></math></span>. The technique of elimination by substitution is based on discovering a coherently <span><math><mi>Z</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></math></span>-separating tuple of polynomials <span><math><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></math></span> in an ideal <em>I</em>, i.e., on finding polynomials such that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> with <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>K</mi><mo>[</mo><mi>X</mi><mo>∖</mo><mi>Z</mi><mo>]</mo></math></span>. Here we elaborate on this technique in the case when <em>P</em> is non-negatively graded. The existence of a coherently <em>Z</em>-separating tuple is reduced to solving several <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-module membership problems. Best separable re-embeddings, i.e., isomorphisms <span><math><mi>P</mi><mo>/</mo><mi>I</mi><mo>⟶</mo><mi>K</mi><mo>[</mo><mi>X</mi><mo>∖</mo><mi>Z</mi><mo>]</mo><mo>/</mo><mo>(</mo><mi>I</mi><mo>∩</mo><mi>K</mi><mo>[</mo><mi>X</mi><mo>∖</mo><mi>Z</mi><mo>]</mo><mo>)</mo></math></span> with maximal #<em>Z</em>, are found degree-by-degree. They turn out to yield optimal re-embeddings in the positively graded case. Viewing <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>⟶</mo><mi>P</mi><mo>/</mo><mi>I</mi></math></span> as a fibration over an affine space, we show that its fibers allow optimal <em>Z</em>-separating re-embeddings, and we provide a criterion for a fiber to be isomorphic to an affine space. In the last section we introduce a new technique based on the solution of a unimodular matrix problem which enables us to construct automorphisms of <em>P</em> such that additional <em>Z</em>-separating re-embeddings are possible. One of the main outcomes is an algorithm which allows us to explicitly compute a homogeneous isomorphism between <span><math><mi>P</mi><mo>/</mo><mi>I</mi></math></span> and a non-negatively graded polynomial ring if <span><math><mi>P</mi><mo>/</mo><mi>I</mi></math></span> is regular.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"131 \",\"pages\":\"Article 102445\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000276\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000276","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

设K为域,P=K[x1,…,xn]。代换消去的技术是基于在理想I中发现一个连贯的Z=(z1,…,zs)分离多项式(f1,…,fs)元组,即,基于找到这样的多项式fi=zi−hi且hi∈K[X∈Z]。在这里,我们详细说明了这种技术的情况下,当P是非负分级。相干z分离元组的存在性被简化为求解若干p -模隶属性问题。最佳可分离重嵌入,即P/I½K[X × Z]/(I∩K[X × Z])具有极大#Z的同构,是逐级找到的。结果证明,在正分级的情况下,它们产生了最优的重新嵌入。将P0 / P/I视为仿射空间上的纤维,我们表明其纤维允许最佳的z分离再嵌入,并且我们提供了纤维与仿射空间同构的标准。在最后一节中,我们介绍了一种基于非模矩阵问题解的新技术,该技术使我们能够构造P的自同构,从而使额外的z分离重嵌入成为可能。其中一个主要成果是一种算法,它允许我们显式地计算P/I与非负梯度多项式环之间的齐次同构,如果P/I是正则的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elimination by substitution
Let K be a field and P=K[x1,,xn]. The technique of elimination by substitution is based on discovering a coherently Z=(z1,,zs)-separating tuple of polynomials (f1,,fs) in an ideal I, i.e., on finding polynomials such that fi=zihi with hiK[XZ]. Here we elaborate on this technique in the case when P is non-negatively graded. The existence of a coherently Z-separating tuple is reduced to solving several P0-module membership problems. Best separable re-embeddings, i.e., isomorphisms P/IK[XZ]/(IK[XZ]) with maximal #Z, are found degree-by-degree. They turn out to yield optimal re-embeddings in the positively graded case. Viewing P0P/I as a fibration over an affine space, we show that its fibers allow optimal Z-separating re-embeddings, and we provide a criterion for a fiber to be isomorphic to an affine space. In the last section we introduce a new technique based on the solution of a unimodular matrix problem which enables us to construct automorphisms of P such that additional Z-separating re-embeddings are possible. One of the main outcomes is an algorithm which allows us to explicitly compute a homogeneous isomorphism between P/I and a non-negatively graded polynomial ring if P/I is regular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信