{"title":"A reactive flame retardant based on functionalized α-amino-ε-caprolactam with a P-C-N bond structure for copolymerized flame-retardant polyamide","authors":"Rende Qin, Wenxing Yuan, Jiajun Fu, Zixin Zhang, Yongjie Yuan, Hailiang Zhang","doi":"10.1016/j.polymdegradstab.2025.111363","DOIUrl":null,"url":null,"abstract":"<div><div>As one of the most widely used polymer materials in the world, polyamide 6 (PA6) requires enhanced flame retardancy due to its expanding applications. Here, a reactive flame retardant, P-Ph-N ACL, based on functionalized α-amino-ε-caprolactam is synthesized through a two-step Kabachnik-Fields reaction, using α-amino-ε-caprolactam (ACL), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), and benzaldehyde as the reactants. As a reactive flame retardant, P-Ph-N ACL exhibits excellent flame-retardant performance, thermal stability, and reactivity. A series of copolymerized flame-retardant polyamide (P-Ph-N PA) are synthesized via hydrolytic copolycondensation using ε-caprolactam (CPL) and P-Ph-N ACL as raw materials. As the amount of the P-Ph-N ACL increases, the flame-retardant performance of P-Ph-N PA improves significantly. When 8 wt% of P-Ph-N ACL is added, the limiting oxygen index (LOI) of P-Ph-N PA-8 increases from 21% for pure PA6 to 35%. In vertical combustion tests, P-Ph-N PA-8 self-extinguishes within 7 s after ignition, achieving the UL94 V-0 rating. The cooperative effects of gas-phase and condensed-phase flame-retardant mode of actions collectively contribute to the enhanced flame retardancy of P-Ph-N PA. Furthermore, P-Ph-N PA-8 maintains a relatively high molecular weight and crystallinity, along with commendable thermal stability and mechanical properties.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"238 ","pages":"Article 111363"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025001934","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
A reactive flame retardant based on functionalized α-amino-ε-caprolactam with a P-C-N bond structure for copolymerized flame-retardant polyamide
As one of the most widely used polymer materials in the world, polyamide 6 (PA6) requires enhanced flame retardancy due to its expanding applications. Here, a reactive flame retardant, P-Ph-N ACL, based on functionalized α-amino-ε-caprolactam is synthesized through a two-step Kabachnik-Fields reaction, using α-amino-ε-caprolactam (ACL), 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), and benzaldehyde as the reactants. As a reactive flame retardant, P-Ph-N ACL exhibits excellent flame-retardant performance, thermal stability, and reactivity. A series of copolymerized flame-retardant polyamide (P-Ph-N PA) are synthesized via hydrolytic copolycondensation using ε-caprolactam (CPL) and P-Ph-N ACL as raw materials. As the amount of the P-Ph-N ACL increases, the flame-retardant performance of P-Ph-N PA improves significantly. When 8 wt% of P-Ph-N ACL is added, the limiting oxygen index (LOI) of P-Ph-N PA-8 increases from 21% for pure PA6 to 35%. In vertical combustion tests, P-Ph-N PA-8 self-extinguishes within 7 s after ignition, achieving the UL94 V-0 rating. The cooperative effects of gas-phase and condensed-phase flame-retardant mode of actions collectively contribute to the enhanced flame retardancy of P-Ph-N PA. Furthermore, P-Ph-N PA-8 maintains a relatively high molecular weight and crystallinity, along with commendable thermal stability and mechanical properties.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.