变渗透率混合对流混合纳米流体的传热分析

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Manimegalai C. , Peri K. Kameswaran , P. Sibanda
{"title":"变渗透率混合对流混合纳米流体的传热分析","authors":"Manimegalai C. ,&nbsp;Peri K. Kameswaran ,&nbsp;P. Sibanda","doi":"10.1016/j.sciaf.2025.e02670","DOIUrl":null,"url":null,"abstract":"<div><div>The main focus of this study is to enhance the thermal performance of oil-cooled engines with the help of hybrid nanofluid in the automobile industry. The problem arises from the fact that conventional fluids are inadequate to enable efficient heat absorption and generation issues in industrial sectors. The present work examines how thermal dispersion affects the fluid in a non-Darcy porous medium over a vertical cylinder. In addition, mixed convection, variable permeability, and hybrid nanofluids are utilized to model the present boundary layer problem. A combination of hybrid nanofluids is chosen as carbon nanotubes, due to its temperature resistant property. Engine Oil is used as a base fluid which plays a vital role in lubrication and cooling process. The promising thermophysical properties of nanoparticles and Engine Oil are considered at <span><math><mrow><mn>27</mn><msup><mrow><mspace></mspace></mrow><mrow><mo>∘</mo></mrow></msup><mi>C</mi></mrow></math></span>. Moreover, the effects of Engine Oil at <span><math><mrow><mn>10</mn><msup><mrow><mspace></mspace></mrow><mrow><mo>∘</mo></mrow></msup><mi>C</mi></mrow></math></span>, <span><math><mrow><mn>20</mn><msup><mrow><mspace></mspace></mrow><mrow><mo>∘</mo></mrow></msup><mi>C</mi></mrow></math></span>, <span><math><mrow><mn>30</mn><msup><mrow><mspace></mspace></mrow><mrow><mo>∘</mo></mrow></msup><mi>C</mi></mrow></math></span>, and <span><math><mrow><mn>40</mn><msup><mrow><mspace></mspace></mrow><mrow><mo>∘</mo></mrow></msup><mi>C</mi></mrow></math></span> are analyzed to detect the heat transfer augmentation. The numerical findings of the converted system are solved by the bvp4c solver through MATLAB. The graphical results explore the strengthened temperature distribution, as the nanoparticle’s volume fraction enhances. Also, the numerical outcomes are validated with existing literature. Furthermore, the numerical results are explored for different fluid temperatures of Engine Oil. The thermal dispersion model-based simulations demonstrate an increase in thermal conductivity at maximum velocity. Based on these simulations, the results showed that the fluid’s surface area and heat transmission capacity is increased by the suspended solid nanoparticle volume fraction. The average Nusselt number improves as the solid volume fraction improves. Furthermore, considerable improvement in thermal conductivity is observed for <span><math><mrow><mi>A</mi><mi>g</mi><mo>−</mo><mi>S</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mo>/</mo><mi>E</mi><mi>O</mi></mrow></math></span>. The <span><math><mrow><mi>A</mi><mi>g</mi><mo>−</mo><mi>S</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mo>/</mo><mi>E</mi><mi>O</mi></mrow></math></span> achieve more heat transfer than <span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi><mo>−</mo><mi>M</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mo>/</mo><mi>E</mi><mi>O</mi></mrow></math></span>. We also examined the effects of the variable permeability variation on the physical parameters of the problem.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"28 ","pages":"Article e02670"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat transfer analysis of mixed convective hybrid nanofluid flow with variable permeability\",\"authors\":\"Manimegalai C. ,&nbsp;Peri K. Kameswaran ,&nbsp;P. Sibanda\",\"doi\":\"10.1016/j.sciaf.2025.e02670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main focus of this study is to enhance the thermal performance of oil-cooled engines with the help of hybrid nanofluid in the automobile industry. The problem arises from the fact that conventional fluids are inadequate to enable efficient heat absorption and generation issues in industrial sectors. The present work examines how thermal dispersion affects the fluid in a non-Darcy porous medium over a vertical cylinder. In addition, mixed convection, variable permeability, and hybrid nanofluids are utilized to model the present boundary layer problem. A combination of hybrid nanofluids is chosen as carbon nanotubes, due to its temperature resistant property. Engine Oil is used as a base fluid which plays a vital role in lubrication and cooling process. The promising thermophysical properties of nanoparticles and Engine Oil are considered at <span><math><mrow><mn>27</mn><msup><mrow><mspace></mspace></mrow><mrow><mo>∘</mo></mrow></msup><mi>C</mi></mrow></math></span>. Moreover, the effects of Engine Oil at <span><math><mrow><mn>10</mn><msup><mrow><mspace></mspace></mrow><mrow><mo>∘</mo></mrow></msup><mi>C</mi></mrow></math></span>, <span><math><mrow><mn>20</mn><msup><mrow><mspace></mspace></mrow><mrow><mo>∘</mo></mrow></msup><mi>C</mi></mrow></math></span>, <span><math><mrow><mn>30</mn><msup><mrow><mspace></mspace></mrow><mrow><mo>∘</mo></mrow></msup><mi>C</mi></mrow></math></span>, and <span><math><mrow><mn>40</mn><msup><mrow><mspace></mspace></mrow><mrow><mo>∘</mo></mrow></msup><mi>C</mi></mrow></math></span> are analyzed to detect the heat transfer augmentation. The numerical findings of the converted system are solved by the bvp4c solver through MATLAB. The graphical results explore the strengthened temperature distribution, as the nanoparticle’s volume fraction enhances. Also, the numerical outcomes are validated with existing literature. Furthermore, the numerical results are explored for different fluid temperatures of Engine Oil. The thermal dispersion model-based simulations demonstrate an increase in thermal conductivity at maximum velocity. Based on these simulations, the results showed that the fluid’s surface area and heat transmission capacity is increased by the suspended solid nanoparticle volume fraction. The average Nusselt number improves as the solid volume fraction improves. Furthermore, considerable improvement in thermal conductivity is observed for <span><math><mrow><mi>A</mi><mi>g</mi><mo>−</mo><mi>S</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mo>/</mo><mi>E</mi><mi>O</mi></mrow></math></span>. The <span><math><mrow><mi>A</mi><mi>g</mi><mo>−</mo><mi>S</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mo>/</mo><mi>E</mi><mi>O</mi></mrow></math></span> achieve more heat transfer than <span><math><mrow><mi>C</mi><mi>u</mi><mi>O</mi><mo>−</mo><mi>M</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mo>/</mo><mi>E</mi><mi>O</mi></mrow></math></span>. We also examined the effects of the variable permeability variation on the physical parameters of the problem.</div></div>\",\"PeriodicalId\":21690,\"journal\":{\"name\":\"Scientific African\",\"volume\":\"28 \",\"pages\":\"Article e02670\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific African\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468227625001401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227625001401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是利用混合纳米流体提高汽车工业中油冷发动机的热性能。这一问题是由于传统流体不足以有效地吸收和产生工业部门的热量。本工作考察了热分散如何影响流体在非达西多孔介质上的垂直圆柱体。此外,利用混合对流、变渗透率和混合纳米流体来模拟当前的边界层问题。选择混合纳米流体的组合作为碳纳米管,因为它具有耐温性能。发动机油作为基础液,在润滑和冷却过程中起着至关重要的作用。纳米颗粒和发动机油在27°C时的热物理性能被考虑在内。此外,还分析了10°C、20°C、30°C和40°C时机油的作用,以检测传热增强的情况。利用MATLAB的bvp4c求解器对转换系统的数值结果进行了求解。图形化结果揭示了随着纳米颗粒体积分数的增加而增强的温度分布。此外,数值结果与现有文献进行了验证。进一步探讨了不同机油温度下的数值结果。基于热扩散模型的模拟表明,在最大速度下,热导率增加。模拟结果表明,悬浮固体纳米颗粒的体积分数增加了流体的表面积和传热能力。平均努塞尔数随着固体体积分数的提高而提高。此外,还观察到Ag−swcnts /EO的导热性有相当大的改善。Ag−SWCNT/EO比CuO−MWCNT/EO传热效果更好。我们还研究了可变渗透率变化对问题物理参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat transfer analysis of mixed convective hybrid nanofluid flow with variable permeability
The main focus of this study is to enhance the thermal performance of oil-cooled engines with the help of hybrid nanofluid in the automobile industry. The problem arises from the fact that conventional fluids are inadequate to enable efficient heat absorption and generation issues in industrial sectors. The present work examines how thermal dispersion affects the fluid in a non-Darcy porous medium over a vertical cylinder. In addition, mixed convection, variable permeability, and hybrid nanofluids are utilized to model the present boundary layer problem. A combination of hybrid nanofluids is chosen as carbon nanotubes, due to its temperature resistant property. Engine Oil is used as a base fluid which plays a vital role in lubrication and cooling process. The promising thermophysical properties of nanoparticles and Engine Oil are considered at 27C. Moreover, the effects of Engine Oil at 10C, 20C, 30C, and 40C are analyzed to detect the heat transfer augmentation. The numerical findings of the converted system are solved by the bvp4c solver through MATLAB. The graphical results explore the strengthened temperature distribution, as the nanoparticle’s volume fraction enhances. Also, the numerical outcomes are validated with existing literature. Furthermore, the numerical results are explored for different fluid temperatures of Engine Oil. The thermal dispersion model-based simulations demonstrate an increase in thermal conductivity at maximum velocity. Based on these simulations, the results showed that the fluid’s surface area and heat transmission capacity is increased by the suspended solid nanoparticle volume fraction. The average Nusselt number improves as the solid volume fraction improves. Furthermore, considerable improvement in thermal conductivity is observed for AgSWCNT/EO. The AgSWCNT/EO achieve more heat transfer than CuOMWCNT/EO. We also examined the effects of the variable permeability variation on the physical parameters of the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信