非交换bsamzout定义域与伪mv代数

IF 1.2 3区 数学 Q1 MATHEMATICS
Anatolij Dvurečenskij , László Fuchs , Omid Zahiri
{"title":"非交换bsamzout定义域与伪mv代数","authors":"Anatolij Dvurečenskij ,&nbsp;László Fuchs ,&nbsp;Omid Zahiri","doi":"10.1016/j.jmaa.2025.129545","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by the successful applications of Bézout domains in the theory of MV-algebras, we develop a generalization of Bézout domains to the non-commutative case for applications to pseudo MV-algebras. The well-known Kaplansky-Jaffard-Ohm theorem is generalized by constructing (not necessarily commutative) domains of Bézout type whose groups of divisibility are certain lattice-ordered (non-Abelian) groups. Some related ring properties (like Ore conditions) are also studied, and their connections to pseudo MV-algebras are established. A few applications are given to illustrate how our results can be applied to certain pseudo MV-algebras while they are treated as subsets of unital <em>ℓ</em>-groups.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129545"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-commutative Bézout domains and pseudo MV-algebras\",\"authors\":\"Anatolij Dvurečenskij ,&nbsp;László Fuchs ,&nbsp;Omid Zahiri\",\"doi\":\"10.1016/j.jmaa.2025.129545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by the successful applications of Bézout domains in the theory of MV-algebras, we develop a generalization of Bézout domains to the non-commutative case for applications to pseudo MV-algebras. The well-known Kaplansky-Jaffard-Ohm theorem is generalized by constructing (not necessarily commutative) domains of Bézout type whose groups of divisibility are certain lattice-ordered (non-Abelian) groups. Some related ring properties (like Ore conditions) are also studied, and their connections to pseudo MV-algebras are established. A few applications are given to illustrate how our results can be applied to certain pseudo MV-algebras while they are treated as subsets of unital <em>ℓ</em>-groups.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 2\",\"pages\":\"Article 129545\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003269\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003269","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

基于bsamzout定义域在mv -代数理论中的成功应用,我们将bsamzout定义域推广到伪mv -代数的非交换情形。通过构造具有可整除性的群为格序(非阿贝尔)群的b zout型域(不一定可交换),推广了著名的Kaplansky-Jaffard-Ohm定理。研究了环的一些相关性质(如Ore条件),并建立了它们与伪mv -代数的联系。给出几个应用,说明我们的结果如何应用于某些伪mv -代数,当它们被视为单位群的子集时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-commutative Bézout domains and pseudo MV-algebras
Motivated by the successful applications of Bézout domains in the theory of MV-algebras, we develop a generalization of Bézout domains to the non-commutative case for applications to pseudo MV-algebras. The well-known Kaplansky-Jaffard-Ohm theorem is generalized by constructing (not necessarily commutative) domains of Bézout type whose groups of divisibility are certain lattice-ordered (non-Abelian) groups. Some related ring properties (like Ore conditions) are also studied, and their connections to pseudo MV-algebras are established. A few applications are given to illustrate how our results can be applied to certain pseudo MV-algebras while they are treated as subsets of unital -groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信