算子值矩阵的Banach代数的Wiener对

IF 1.2 3区 数学 Q1 MATHEMATICS
Lukas Köhldorfer, Peter Balazs
{"title":"算子值矩阵的Banach代数的Wiener对","authors":"Lukas Köhldorfer,&nbsp;Peter Balazs","doi":"10.1016/j.jmaa.2025.129525","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we consider several new examples of Wiener pairs <span><math><mi>A</mi><mo>⊆</mo><mi>B</mi></math></span>, where <span><math><mi>B</mi><mo>=</mo><mi>B</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>;</mo><mi>H</mi><mo>)</mo><mo>)</mo></math></span> is the Banach algebra of bounded operators acting on the Hilbert space-valued Bochner sequence space <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>;</mo><mi>H</mi><mo>)</mo></math></span> and <span><math><mi>A</mi><mo>=</mo><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is a Banach algebra consisting of operator-valued matrices indexed by some relatively separated set <span><math><mi>X</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. In particular, we consider <span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>-valued versions of the Jaffard algebra, of certain weighted Schur-type algebras, of Banach algebras which are defined by more general off-diagonal decay conditions than polynomial decay, of weighted versions of the Baskakov-Gohberg-Sjöstrand algebra, and of anisotropic variations of all of these matrix algebras, and show that they are inverse-closed in <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>;</mo><mi>H</mi><mo>)</mo><mo>)</mo></math></span>. In addition, we obtain that each of these Banach algebras is symmetric.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129525"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wiener pairs of Banach algebras of operator-valued matrices\",\"authors\":\"Lukas Köhldorfer,&nbsp;Peter Balazs\",\"doi\":\"10.1016/j.jmaa.2025.129525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article we consider several new examples of Wiener pairs <span><math><mi>A</mi><mo>⊆</mo><mi>B</mi></math></span>, where <span><math><mi>B</mi><mo>=</mo><mi>B</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>;</mo><mi>H</mi><mo>)</mo><mo>)</mo></math></span> is the Banach algebra of bounded operators acting on the Hilbert space-valued Bochner sequence space <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>;</mo><mi>H</mi><mo>)</mo></math></span> and <span><math><mi>A</mi><mo>=</mo><mi>A</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is a Banach algebra consisting of operator-valued matrices indexed by some relatively separated set <span><math><mi>X</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. In particular, we consider <span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>-valued versions of the Jaffard algebra, of certain weighted Schur-type algebras, of Banach algebras which are defined by more general off-diagonal decay conditions than polynomial decay, of weighted versions of the Baskakov-Gohberg-Sjöstrand algebra, and of anisotropic variations of all of these matrix algebras, and show that they are inverse-closed in <span><math><mi>B</mi><mo>(</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>X</mi><mo>;</mo><mi>H</mi><mo>)</mo><mo>)</mo></math></span>. In addition, we obtain that each of these Banach algebras is symmetric.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 2\",\"pages\":\"Article 129525\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25003063\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25003063","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑维纳对A≠B的几个新例子,其中B=B(l2 (X;H))是作用于Hilbert空间值Bochner序列空间l2 (X;H)的有界算子的巴拿赫代数,A=A(X)是由若干相对分离的集合X≠Rd索引的算子值矩阵组成的巴拿赫代数。特别地,我们考虑了Jaffard代数的B(H)值版本,某些加权schur型代数,由比多项式衰减更一般的非对角衰减条件定义的Banach代数,Baskakov-Gohberg-Sjöstrand代数的加权版本,以及所有这些矩阵代数的各向异性变化,并证明它们在B(l2 (X;H))中是逆闭的。此外,我们得到了每一个巴拿赫代数都是对称的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wiener pairs of Banach algebras of operator-valued matrices
In this article we consider several new examples of Wiener pairs AB, where B=B(2(X;H)) is the Banach algebra of bounded operators acting on the Hilbert space-valued Bochner sequence space 2(X;H) and A=A(X) is a Banach algebra consisting of operator-valued matrices indexed by some relatively separated set XRd. In particular, we consider B(H)-valued versions of the Jaffard algebra, of certain weighted Schur-type algebras, of Banach algebras which are defined by more general off-diagonal decay conditions than polynomial decay, of weighted versions of the Baskakov-Gohberg-Sjöstrand algebra, and of anisotropic variations of all of these matrix algebras, and show that they are inverse-closed in B(2(X;H)). In addition, we obtain that each of these Banach algebras is symmetric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信