由矩阵生成的n维区间上可容许阶的等价刻画

IF 3.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wei Zhang
{"title":"由矩阵生成的n维区间上可容许阶的等价刻画","authors":"Wei Zhang","doi":"10.1016/j.ijar.2025.109438","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>n</em>-dimensional intervals are a generalization of intervals, and they are also the membership degrees of <em>n</em>-dimensional fuzzy sets. They can be used to represent high-dimensional data. This paper first defines a binary relation on <em>n</em>-dimensional intervals using a matrix. Then, we prove that this binary relation is an admissible order on <em>n</em>-dimensional intervals if and only if the determinant of the corresponding matrix is not equal to zero, and for each column of the matrix, the first non-zero element is greater than zero. Finally, we apply this type of admissible order to a specific multi-criteria group decision-making case.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"183 ","pages":"Article 109438"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An equivalent characterization for admissible orders on n-dimensional intervals generated by matrices\",\"authors\":\"Wei Zhang\",\"doi\":\"10.1016/j.ijar.2025.109438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <em>n</em>-dimensional intervals are a generalization of intervals, and they are also the membership degrees of <em>n</em>-dimensional fuzzy sets. They can be used to represent high-dimensional data. This paper first defines a binary relation on <em>n</em>-dimensional intervals using a matrix. Then, we prove that this binary relation is an admissible order on <em>n</em>-dimensional intervals if and only if the determinant of the corresponding matrix is not equal to zero, and for each column of the matrix, the first non-zero element is greater than zero. Finally, we apply this type of admissible order to a specific multi-criteria group decision-making case.</div></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"183 \",\"pages\":\"Article 109438\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X25000799\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25000799","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

n维区间是区间的一种推广,也是n维模糊集的隶属度。它们可以用来表示高维数据。本文首先用矩阵定义了n维区间上的二元关系。然后,证明了该二元关系是n维区间上的可容许阶当且仅当对应矩阵的行列式不等于零,且对于矩阵的每一列,第一个非零元素大于零。最后,我们将这种允许顺序应用到一个具体的多准则群体决策案例中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An equivalent characterization for admissible orders on n-dimensional intervals generated by matrices
The n-dimensional intervals are a generalization of intervals, and they are also the membership degrees of n-dimensional fuzzy sets. They can be used to represent high-dimensional data. This paper first defines a binary relation on n-dimensional intervals using a matrix. Then, we prove that this binary relation is an admissible order on n-dimensional intervals if and only if the determinant of the corresponding matrix is not equal to zero, and for each column of the matrix, the first non-zero element is greater than zero. Finally, we apply this type of admissible order to a specific multi-criteria group decision-making case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信