在BiFeO3的b位掺杂La3+的计算和实验方法:对BiFe0.90La0.10O3多铁性的见解

IF 5.5 Q1 ENGINEERING, CHEMICAL
Sagar Dutta , Md. Rabiul Hassan , M. D. I. Bhuyan , Angkita Mistry Tama , Gourab Kumar Roy , Tusar Saha , Md. Sarowar Hossain
{"title":"在BiFeO3的b位掺杂La3+的计算和实验方法:对BiFe0.90La0.10O3多铁性的见解","authors":"Sagar Dutta ,&nbsp;Md. Rabiul Hassan ,&nbsp;M. D. I. Bhuyan ,&nbsp;Angkita Mistry Tama ,&nbsp;Gourab Kumar Roy ,&nbsp;Tusar Saha ,&nbsp;Md. Sarowar Hossain","doi":"10.1016/j.ceja.2025.100742","DOIUrl":null,"url":null,"abstract":"<div><div>The structure and microstructure of BiFeO<sub>3</sub> and BiFe<sub>0.90</sub>La<sub>0.10</sub>O<sub>3</sub> ratify a successful synthesis of the perovskite material associated with the R3c space group. The structural parameters have been obtained by the Rietveld-refinement of XRD data followed by the DFT calculation. The computed band structure manifests the existence of the up-spin indirect band gap (<em>E<sub>g</sub></em>) in both samples, along with a reduced <em>E<sub>g</sub></em> for La doping in BiFeO<sub>3</sub> (2.73 eV). Apart from this, frequency-dependent dielectric properties of BiFeO<sub>3</sub> and BiFe<sub>0.90</sub>La<sub>0.10</sub>O<sub>3</sub> have been extensively studied theoretically as well as experimentally between 100 Hz to 100 MHz. Interestingly, the real part of the calculated dielectric function of the BFLO sample shifts from the larger positive values to the lower negative values with elevated frequency of the applied field. Therefore<em>,</em> experimental dielectric permittivity has been analyzed using the mathematical models of Logistic, Lorentz, and Polynomial functions. In addition, dynamic stability is reviewed by the phonon dispersion calculation that signifies entirely positive vibrational modes of both acoustic and optical phonons for BiFeO<sub>3</sub>, while BiFe<sub>0.90</sub>La<sub>0.10</sub>O<sub>3</sub> exhibits two negative vibrational modes of acoustic phonons at -44.95 cm<sup>-1</sup>. However, the calculated Debye temperature (θ<sub><em>D</em></sub>) for BFLO is ∼1214 K at 1000 K, which is ∼2 times higher than it is for BiFeO<sub>3</sub> (∼608 K at 1000 K). Consequently, BiFeO<sub>3</sub> and BiFe<sub>0.90</sub>La<sub>0.10</sub>O<sub>3</sub> samples are categorized as weak ferromagnetic based on magnetic saturation (<em>M<sub>s</sub></em>) of 6.49 and 0.13 emu/g, respectively. Finally, BiFeO<sub>3</sub> has been identified as ideal for energy storage electronic devices in higher frequency regions, while BiFe<sub>0.90</sub>La<sub>0.10</sub>O<sub>3</sub> is more suitable for lower frequency applications.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"22 ","pages":"Article 100742"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational and experimental approach to La3+ doping at the B-site of BiFeO3: Insights into BiFe0.90La0.10O3 multiferroic\",\"authors\":\"Sagar Dutta ,&nbsp;Md. Rabiul Hassan ,&nbsp;M. D. I. Bhuyan ,&nbsp;Angkita Mistry Tama ,&nbsp;Gourab Kumar Roy ,&nbsp;Tusar Saha ,&nbsp;Md. Sarowar Hossain\",\"doi\":\"10.1016/j.ceja.2025.100742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The structure and microstructure of BiFeO<sub>3</sub> and BiFe<sub>0.90</sub>La<sub>0.10</sub>O<sub>3</sub> ratify a successful synthesis of the perovskite material associated with the R3c space group. The structural parameters have been obtained by the Rietveld-refinement of XRD data followed by the DFT calculation. The computed band structure manifests the existence of the up-spin indirect band gap (<em>E<sub>g</sub></em>) in both samples, along with a reduced <em>E<sub>g</sub></em> for La doping in BiFeO<sub>3</sub> (2.73 eV). Apart from this, frequency-dependent dielectric properties of BiFeO<sub>3</sub> and BiFe<sub>0.90</sub>La<sub>0.10</sub>O<sub>3</sub> have been extensively studied theoretically as well as experimentally between 100 Hz to 100 MHz. Interestingly, the real part of the calculated dielectric function of the BFLO sample shifts from the larger positive values to the lower negative values with elevated frequency of the applied field. Therefore<em>,</em> experimental dielectric permittivity has been analyzed using the mathematical models of Logistic, Lorentz, and Polynomial functions. In addition, dynamic stability is reviewed by the phonon dispersion calculation that signifies entirely positive vibrational modes of both acoustic and optical phonons for BiFeO<sub>3</sub>, while BiFe<sub>0.90</sub>La<sub>0.10</sub>O<sub>3</sub> exhibits two negative vibrational modes of acoustic phonons at -44.95 cm<sup>-1</sup>. However, the calculated Debye temperature (θ<sub><em>D</em></sub>) for BFLO is ∼1214 K at 1000 K, which is ∼2 times higher than it is for BiFeO<sub>3</sub> (∼608 K at 1000 K). Consequently, BiFeO<sub>3</sub> and BiFe<sub>0.90</sub>La<sub>0.10</sub>O<sub>3</sub> samples are categorized as weak ferromagnetic based on magnetic saturation (<em>M<sub>s</sub></em>) of 6.49 and 0.13 emu/g, respectively. Finally, BiFeO<sub>3</sub> has been identified as ideal for energy storage electronic devices in higher frequency regions, while BiFe<sub>0.90</sub>La<sub>0.10</sub>O<sub>3</sub> is more suitable for lower frequency applications.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":\"22 \",\"pages\":\"Article 100742\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666821125000390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821125000390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

BiFeO3和BiFe0.90La0.10O3的结构和微观结构证明了与R3c空间基团相关的钙钛矿材料的成功合成。通过XRD数据的rietveld细化和DFT计算得到了结构参数。计算得到的能带结构表明,两种样品中均存在上旋间接带隙(Eg),并且La掺杂在BiFeO3 (2.73 eV)中的Eg减小。除此之外,BiFeO3和bife0.90 la0.100 o3的频率相关介电特性已经在100 Hz到100 MHz之间进行了广泛的理论和实验研究。有趣的是,计算出的BFLO样品的介电函数的实部随着外加电场频率的升高而从较大的正值向较低的负值偏移。因此,实验介质介电常数已经用逻辑、洛伦兹和多项式函数的数学模型进行了分析。此外,通过声子色散计算对BiFeO3的动态稳定性进行了评价,表明BiFe0.90La0.10O3在-44.95 cm-1时声子和声子的振动模式均为正,而BiFe0.90La0.10O3在-44.95 cm-1时声子的振动模式为负。然而,计算出的BFLO在1000 K时的德拜温度(θD)为~ 1214 K,比BiFeO3(在1000 K时为~ 608 K)高~ 2倍。因此,基于磁饱和度(Ms)分别为6.49和0.13 emu/g, BiFeO3和BiFe0.90La0.10O3样品被归类为弱铁磁性。最后,BiFeO3已被确定为高频区域储能电子器件的理想选择,而BiFe0.90La0.10O3更适合低频应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computational and experimental approach to La3+ doping at the B-site of BiFeO3: Insights into BiFe0.90La0.10O3 multiferroic

Computational and experimental approach to La3+ doping at the B-site of BiFeO3: Insights into BiFe0.90La0.10O3 multiferroic
The structure and microstructure of BiFeO3 and BiFe0.90La0.10O3 ratify a successful synthesis of the perovskite material associated with the R3c space group. The structural parameters have been obtained by the Rietveld-refinement of XRD data followed by the DFT calculation. The computed band structure manifests the existence of the up-spin indirect band gap (Eg) in both samples, along with a reduced Eg for La doping in BiFeO3 (2.73 eV). Apart from this, frequency-dependent dielectric properties of BiFeO3 and BiFe0.90La0.10O3 have been extensively studied theoretically as well as experimentally between 100 Hz to 100 MHz. Interestingly, the real part of the calculated dielectric function of the BFLO sample shifts from the larger positive values to the lower negative values with elevated frequency of the applied field. Therefore, experimental dielectric permittivity has been analyzed using the mathematical models of Logistic, Lorentz, and Polynomial functions. In addition, dynamic stability is reviewed by the phonon dispersion calculation that signifies entirely positive vibrational modes of both acoustic and optical phonons for BiFeO3, while BiFe0.90La0.10O3 exhibits two negative vibrational modes of acoustic phonons at -44.95 cm-1. However, the calculated Debye temperature (θD) for BFLO is ∼1214 K at 1000 K, which is ∼2 times higher than it is for BiFeO3 (∼608 K at 1000 K). Consequently, BiFeO3 and BiFe0.90La0.10O3 samples are categorized as weak ferromagnetic based on magnetic saturation (Ms) of 6.49 and 0.13 emu/g, respectively. Finally, BiFeO3 has been identified as ideal for energy storage electronic devices in higher frequency regions, while BiFe0.90La0.10O3 is more suitable for lower frequency applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信