EDMF-AERO模式框架中吸收气溶胶对PBL演化的实质影响

IF 4.2 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
G.M. Florczyk , K.M. Markowicz , M.L. Witek
{"title":"EDMF-AERO模式框架中吸收气溶胶对PBL演化的实质影响","authors":"G.M. Florczyk ,&nbsp;K.M. Markowicz ,&nbsp;M.L. Witek","doi":"10.1016/j.atmosenv.2025.121192","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the interactions between atmospheric aerosols and the evolution of the planetary boundary layer (PBL) is important for human health, climate, and weather forecasting models. In this study, an eddy-diffusivity mass-flux (EDMF) model is coupled with a radiative transfer model (RTM) to investigate the effects of aerosol optical depth <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> and single scattering albedo <span><math><mi>ω</mi></math></span> on the growth and thermodynamics of the PBL, or the so-called aerosol-PBL interactions (API). The developed model, called EDMF-AERO, was first extensively validated against in-situ radiosonde and microwave radiometer (MWR) observations in the summer, showing very good performance and enabling us to study the API effects proposed in the literature called stove and dome. Having established the model’s satisfactory accuracy we performed a sensitivity study, isolated API effects study, and estimated which compound effect of API influences PBL development more. For the stove case for <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>ω</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>9</mn></mrow></math></span>, the PBL growth speeds up <span><math><mrow><mo>∼</mo><mn>8</mn><mtext>%</mtext></mrow></math></span> and warms up <span><math><mrow><mo>∼</mo><mn>12</mn><mo>.</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> faster compared to the reference (<span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mi>ω</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn></mrow></math></span>). For the dome case for <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>ω</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>9</mn></mrow></math></span>, the PBL growth slows down <span><math><mrow><mo>∼</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> and warms up <span><math><mrow><mo>∼</mo><mn>4</mn><mo>.</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> slower compared to the reference. In extreme conditions (<span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></math></span>, <span><math><mrow><mi>ω</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>81</mn></mrow></math></span>) for the stove case we recorded <span><math><mrow><mo>∼</mo><mn>62</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mo>∼</mo><mn>72</mn><mtext>%</mtext></mrow></math></span> increase in PBL growth and heating rates respectively. For the dome case, we recorded <span><math><mrow><mo>∼</mo><mn>21</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mo>∼</mo><mn>22</mn><mtext>%</mtext></mrow></math></span> decreases in PBL growth and heating rates respectively. In both cases, the feedback loop severely impacts surface aerosol concentrations and enhances heat index. Based on the sensitivity runs, a parametrization relating the <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub></math></span> and <span><math><mi>ω</mi></math></span> on the PBL heating rate and PBL growth is suggested. The EDMF-AERO model developed in this study proves to be capable of providing new insights into the topic of API.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"352 ","pages":"Article 121192"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substantial impacts of absorbing aerosols on PBL evolution in EDMF-AERO modeling framework\",\"authors\":\"G.M. Florczyk ,&nbsp;K.M. Markowicz ,&nbsp;M.L. Witek\",\"doi\":\"10.1016/j.atmosenv.2025.121192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the interactions between atmospheric aerosols and the evolution of the planetary boundary layer (PBL) is important for human health, climate, and weather forecasting models. In this study, an eddy-diffusivity mass-flux (EDMF) model is coupled with a radiative transfer model (RTM) to investigate the effects of aerosol optical depth <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> and single scattering albedo <span><math><mi>ω</mi></math></span> on the growth and thermodynamics of the PBL, or the so-called aerosol-PBL interactions (API). The developed model, called EDMF-AERO, was first extensively validated against in-situ radiosonde and microwave radiometer (MWR) observations in the summer, showing very good performance and enabling us to study the API effects proposed in the literature called stove and dome. Having established the model’s satisfactory accuracy we performed a sensitivity study, isolated API effects study, and estimated which compound effect of API influences PBL development more. For the stove case for <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>ω</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>9</mn></mrow></math></span>, the PBL growth speeds up <span><math><mrow><mo>∼</mo><mn>8</mn><mtext>%</mtext></mrow></math></span> and warms up <span><math><mrow><mo>∼</mo><mn>12</mn><mo>.</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> faster compared to the reference (<span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mi>ω</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn></mrow></math></span>). For the dome case for <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>ω</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>9</mn></mrow></math></span>, the PBL growth slows down <span><math><mrow><mo>∼</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> and warms up <span><math><mrow><mo>∼</mo><mn>4</mn><mo>.</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> slower compared to the reference. In extreme conditions (<span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></math></span>, <span><math><mrow><mi>ω</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>81</mn></mrow></math></span>) for the stove case we recorded <span><math><mrow><mo>∼</mo><mn>62</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mo>∼</mo><mn>72</mn><mtext>%</mtext></mrow></math></span> increase in PBL growth and heating rates respectively. For the dome case, we recorded <span><math><mrow><mo>∼</mo><mn>21</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mo>∼</mo><mn>22</mn><mtext>%</mtext></mrow></math></span> decreases in PBL growth and heating rates respectively. In both cases, the feedback loop severely impacts surface aerosol concentrations and enhances heat index. Based on the sensitivity runs, a parametrization relating the <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub></math></span> and <span><math><mi>ω</mi></math></span> on the PBL heating rate and PBL growth is suggested. The EDMF-AERO model developed in this study proves to be capable of providing new insights into the topic of API.</div></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"352 \",\"pages\":\"Article 121192\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231025001670\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231025001670","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

了解大气气溶胶与行星边界层(PBL)演化之间的相互作用对人类健康、气候和天气预报模式具有重要意义。在这项研究中,涡流扩散质量通量(EDMF)模型与辐射传输模型(RTM)相结合,研究气溶胶光学深度τλ和单散射反照率ω对PBL生长和热力学的影响,或所谓的气溶胶-PBL相互作用(API)。开发的模型称为EDMF-AERO,首先在夏季通过现场无线电探空仪和微波辐射计(MWR)观测进行了广泛验证,显示出非常好的性能,使我们能够研究文献中提出的API效应称为炉子和圆顶。在建立了令人满意的模型精度后,我们进行了敏感性研究、孤立的API效应研究,并估计了API的哪种复合效应对PBL的发展影响更大。对于τ500=0.4和ω=0.9的炉子情况,与参考(τ500=0,ω=1.0)相比,PBL的生长速度加快了~ 8%,升温速度加快了~ 12.5%。对于τ500=0.4和ω=0.9的圆顶情况,与参考值相比,PBL的增长减慢了~ 5%,升温减慢了~ 4.5%。在极端条件下(τ500=1.5, ω=0.81),我们记录到PBL生长和升温速率分别增加了62%和72%。在穹顶的情况下,我们记录到PBL生长和升温速率分别下降了~ 21%和~ 22%。在这两种情况下,反馈回路都严重影响地表气溶胶浓度并提高热指数。在灵敏度运行的基础上,提出了一种与PBL升温速率和PBL生长有关的τ500和ω的参数化方法。本研究开发的EDMF-AERO模型能够为API主题提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Substantial impacts of absorbing aerosols on PBL evolution in EDMF-AERO modeling framework
Understanding the interactions between atmospheric aerosols and the evolution of the planetary boundary layer (PBL) is important for human health, climate, and weather forecasting models. In this study, an eddy-diffusivity mass-flux (EDMF) model is coupled with a radiative transfer model (RTM) to investigate the effects of aerosol optical depth τλ and single scattering albedo ω on the growth and thermodynamics of the PBL, or the so-called aerosol-PBL interactions (API). The developed model, called EDMF-AERO, was first extensively validated against in-situ radiosonde and microwave radiometer (MWR) observations in the summer, showing very good performance and enabling us to study the API effects proposed in the literature called stove and dome. Having established the model’s satisfactory accuracy we performed a sensitivity study, isolated API effects study, and estimated which compound effect of API influences PBL development more. For the stove case for τ500=0.4 and ω=0.9, the PBL growth speeds up 8% and warms up 12.5% faster compared to the reference (τ500=0,ω=1.0). For the dome case for τ500=0.4 and ω=0.9, the PBL growth slows down 5% and warms up 4.5% slower compared to the reference. In extreme conditions (τ500=1.5, ω=0.81) for the stove case we recorded 62% and 72% increase in PBL growth and heating rates respectively. For the dome case, we recorded 21% and 22% decreases in PBL growth and heating rates respectively. In both cases, the feedback loop severely impacts surface aerosol concentrations and enhances heat index. Based on the sensitivity runs, a parametrization relating the τ500 and ω on the PBL heating rate and PBL growth is suggested. The EDMF-AERO model developed in this study proves to be capable of providing new insights into the topic of API.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Environment
Atmospheric Environment 环境科学-环境科学
CiteScore
9.40
自引率
8.00%
发文量
458
审稿时长
53 days
期刊介绍: Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信