{"title":"EDMF-AERO模式框架中吸收气溶胶对PBL演化的实质影响","authors":"G.M. Florczyk , K.M. Markowicz , M.L. Witek","doi":"10.1016/j.atmosenv.2025.121192","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the interactions between atmospheric aerosols and the evolution of the planetary boundary layer (PBL) is important for human health, climate, and weather forecasting models. In this study, an eddy-diffusivity mass-flux (EDMF) model is coupled with a radiative transfer model (RTM) to investigate the effects of aerosol optical depth <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> and single scattering albedo <span><math><mi>ω</mi></math></span> on the growth and thermodynamics of the PBL, or the so-called aerosol-PBL interactions (API). The developed model, called EDMF-AERO, was first extensively validated against in-situ radiosonde and microwave radiometer (MWR) observations in the summer, showing very good performance and enabling us to study the API effects proposed in the literature called stove and dome. Having established the model’s satisfactory accuracy we performed a sensitivity study, isolated API effects study, and estimated which compound effect of API influences PBL development more. For the stove case for <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>ω</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>9</mn></mrow></math></span>, the PBL growth speeds up <span><math><mrow><mo>∼</mo><mn>8</mn><mtext>%</mtext></mrow></math></span> and warms up <span><math><mrow><mo>∼</mo><mn>12</mn><mo>.</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> faster compared to the reference (<span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mi>ω</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn></mrow></math></span>). For the dome case for <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>ω</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>9</mn></mrow></math></span>, the PBL growth slows down <span><math><mrow><mo>∼</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> and warms up <span><math><mrow><mo>∼</mo><mn>4</mn><mo>.</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> slower compared to the reference. In extreme conditions (<span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></math></span>, <span><math><mrow><mi>ω</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>81</mn></mrow></math></span>) for the stove case we recorded <span><math><mrow><mo>∼</mo><mn>62</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mo>∼</mo><mn>72</mn><mtext>%</mtext></mrow></math></span> increase in PBL growth and heating rates respectively. For the dome case, we recorded <span><math><mrow><mo>∼</mo><mn>21</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mo>∼</mo><mn>22</mn><mtext>%</mtext></mrow></math></span> decreases in PBL growth and heating rates respectively. In both cases, the feedback loop severely impacts surface aerosol concentrations and enhances heat index. Based on the sensitivity runs, a parametrization relating the <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub></math></span> and <span><math><mi>ω</mi></math></span> on the PBL heating rate and PBL growth is suggested. The EDMF-AERO model developed in this study proves to be capable of providing new insights into the topic of API.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"352 ","pages":"Article 121192"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substantial impacts of absorbing aerosols on PBL evolution in EDMF-AERO modeling framework\",\"authors\":\"G.M. Florczyk , K.M. Markowicz , M.L. Witek\",\"doi\":\"10.1016/j.atmosenv.2025.121192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the interactions between atmospheric aerosols and the evolution of the planetary boundary layer (PBL) is important for human health, climate, and weather forecasting models. In this study, an eddy-diffusivity mass-flux (EDMF) model is coupled with a radiative transfer model (RTM) to investigate the effects of aerosol optical depth <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> and single scattering albedo <span><math><mi>ω</mi></math></span> on the growth and thermodynamics of the PBL, or the so-called aerosol-PBL interactions (API). The developed model, called EDMF-AERO, was first extensively validated against in-situ radiosonde and microwave radiometer (MWR) observations in the summer, showing very good performance and enabling us to study the API effects proposed in the literature called stove and dome. Having established the model’s satisfactory accuracy we performed a sensitivity study, isolated API effects study, and estimated which compound effect of API influences PBL development more. For the stove case for <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>ω</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>9</mn></mrow></math></span>, the PBL growth speeds up <span><math><mrow><mo>∼</mo><mn>8</mn><mtext>%</mtext></mrow></math></span> and warms up <span><math><mrow><mo>∼</mo><mn>12</mn><mo>.</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> faster compared to the reference (<span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><mi>ω</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>0</mn></mrow></math></span>). For the dome case for <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>ω</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>9</mn></mrow></math></span>, the PBL growth slows down <span><math><mrow><mo>∼</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> and warms up <span><math><mrow><mo>∼</mo><mn>4</mn><mo>.</mo><mn>5</mn><mtext>%</mtext></mrow></math></span> slower compared to the reference. In extreme conditions (<span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></math></span>, <span><math><mrow><mi>ω</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>81</mn></mrow></math></span>) for the stove case we recorded <span><math><mrow><mo>∼</mo><mn>62</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mo>∼</mo><mn>72</mn><mtext>%</mtext></mrow></math></span> increase in PBL growth and heating rates respectively. For the dome case, we recorded <span><math><mrow><mo>∼</mo><mn>21</mn><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mo>∼</mo><mn>22</mn><mtext>%</mtext></mrow></math></span> decreases in PBL growth and heating rates respectively. In both cases, the feedback loop severely impacts surface aerosol concentrations and enhances heat index. Based on the sensitivity runs, a parametrization relating the <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mn>500</mn></mrow></msub></math></span> and <span><math><mi>ω</mi></math></span> on the PBL heating rate and PBL growth is suggested. The EDMF-AERO model developed in this study proves to be capable of providing new insights into the topic of API.</div></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"352 \",\"pages\":\"Article 121192\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231025001670\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231025001670","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Substantial impacts of absorbing aerosols on PBL evolution in EDMF-AERO modeling framework
Understanding the interactions between atmospheric aerosols and the evolution of the planetary boundary layer (PBL) is important for human health, climate, and weather forecasting models. In this study, an eddy-diffusivity mass-flux (EDMF) model is coupled with a radiative transfer model (RTM) to investigate the effects of aerosol optical depth and single scattering albedo on the growth and thermodynamics of the PBL, or the so-called aerosol-PBL interactions (API). The developed model, called EDMF-AERO, was first extensively validated against in-situ radiosonde and microwave radiometer (MWR) observations in the summer, showing very good performance and enabling us to study the API effects proposed in the literature called stove and dome. Having established the model’s satisfactory accuracy we performed a sensitivity study, isolated API effects study, and estimated which compound effect of API influences PBL development more. For the stove case for and , the PBL growth speeds up and warms up faster compared to the reference (). For the dome case for and , the PBL growth slows down and warms up slower compared to the reference. In extreme conditions (, ) for the stove case we recorded and increase in PBL growth and heating rates respectively. For the dome case, we recorded and decreases in PBL growth and heating rates respectively. In both cases, the feedback loop severely impacts surface aerosol concentrations and enhances heat index. Based on the sensitivity runs, a parametrization relating the and on the PBL heating rate and PBL growth is suggested. The EDMF-AERO model developed in this study proves to be capable of providing new insights into the topic of API.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.