Franziska Borer , Marcos T.O. Pimenta , Patrick Winkert
{"title":"具有非线性Neumann边界条件的退化Kirchhoff问题","authors":"Franziska Borer , Marcos T.O. Pimenta , Patrick Winkert","doi":"10.1016/j.jfa.2025.110933","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider degenerate Kirchhoff-type equations of the form<span><span><span><math><mo>−</mo><mi>ϕ</mi><mo>(</mo><mi>Ξ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>)</mo><mrow><mo>(</mo><mi>A</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>−</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mspace></mspace><mspace></mspace><mtext>in </mtext><mi>Ω</mi><mo>,</mo><mi>ϕ</mi><mo>(</mo><mi>Ξ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>)</mo><mi>B</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>⋅</mo><mi>ν</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mspace></mspace><mtext>on </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, is a bounded domain with Lipschitz boundary ∂Ω, <span><math><mi>A</mi></math></span> denotes the double phase operator given by<span><span><span><math><mrow><mi>A</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>div</mi><mspace></mspace><mrow><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo></mrow></mrow></math></span></span></span> for <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is the outer unit normal of Ω at <span><math><mi>x</mi><mo>∈</mo><mo>∂</mo><mi>Ω</mi></math></span>,<span><span><span><math><mi>B</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>,</mo><mi>Ξ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mrow><mo>(</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup></mrow><mrow><mi>q</mi></mrow></mfrac><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></math></span></span></span> <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>N</mi></math></span>, <span><math><mi>p</mi><mo><</mo><mi>q</mi><mo><</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>μ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><msup><mrow><mi>s</mi></mrow><mrow><mi>ζ</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>∈</mo><mi>R</mi></math></span> with <span><math><mi>a</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>b</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>ζ</mi><mo>≥</mo><mn>1</mn></math></span>, and <span><math><mi>f</mi><mo>:</mo><mi>Ω</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span>, <span><math><mi>g</mi><mo>:</mo><mo>∂</mo><mi>Ω</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span> are Carathéodory functions that grow superlinearly and subcritically. We prove the existence of a nodal ground state solution to the problem above, based on variational methods and minimization of the associated energy functional <span><math><mi>E</mi><mo>:</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>→</mo><mi>R</mi></math></span> over the constraint set<span><span><span><math><mrow><mtable><mtr><mtd></mtd><mtd><mi>C</mi><mo>=</mo><mo>{</mo><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>:</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>±</mo></mrow></msup><mo>≠</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mspace></mspace><mspace></mspace><mrow><mo>〈</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>〉</mo></mrow><mo>=</mo><mrow><mo>〈</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>〉</mo></mrow><mo>=</mo><mn>0</mn><mo>}</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> whereby <span><math><mi>C</mi></math></span> differs from the well-known nodal Nehari manifold due to the nonlocal character of the problem.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 4","pages":"Article 110933"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerate Kirchhoff problems with nonlinear Neumann boundary condition\",\"authors\":\"Franziska Borer , Marcos T.O. Pimenta , Patrick Winkert\",\"doi\":\"10.1016/j.jfa.2025.110933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we consider degenerate Kirchhoff-type equations of the form<span><span><span><math><mo>−</mo><mi>ϕ</mi><mo>(</mo><mi>Ξ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>)</mo><mrow><mo>(</mo><mi>A</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>−</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mspace></mspace><mspace></mspace><mtext>in </mtext><mi>Ω</mi><mo>,</mo><mi>ϕ</mi><mo>(</mo><mi>Ξ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>)</mo><mi>B</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>⋅</mo><mi>ν</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mspace></mspace><mtext>on </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, is a bounded domain with Lipschitz boundary ∂Ω, <span><math><mi>A</mi></math></span> denotes the double phase operator given by<span><span><span><math><mrow><mi>A</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>div</mi><mspace></mspace><mrow><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo></mrow></mrow></math></span></span></span> for <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is the outer unit normal of Ω at <span><math><mi>x</mi><mo>∈</mo><mo>∂</mo><mi>Ω</mi></math></span>,<span><span><span><math><mi>B</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>,</mo><mi>Ξ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mrow><mo>(</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup></mrow><mrow><mi>q</mi></mrow></mfrac><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></math></span></span></span> <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>N</mi></math></span>, <span><math><mi>p</mi><mo><</mo><mi>q</mi><mo><</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>μ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><msup><mrow><mi>s</mi></mrow><mrow><mi>ζ</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>∈</mo><mi>R</mi></math></span> with <span><math><mi>a</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>b</mi><mo>></mo><mn>0</mn></math></span> and <span><math><mi>ζ</mi><mo>≥</mo><mn>1</mn></math></span>, and <span><math><mi>f</mi><mo>:</mo><mi>Ω</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span>, <span><math><mi>g</mi><mo>:</mo><mo>∂</mo><mi>Ω</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span> are Carathéodory functions that grow superlinearly and subcritically. We prove the existence of a nodal ground state solution to the problem above, based on variational methods and minimization of the associated energy functional <span><math><mi>E</mi><mo>:</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>→</mo><mi>R</mi></math></span> over the constraint set<span><span><span><math><mrow><mtable><mtr><mtd></mtd><mtd><mi>C</mi><mo>=</mo><mo>{</mo><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>:</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>±</mo></mrow></msup><mo>≠</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mspace></mspace><mspace></mspace><mrow><mo>〈</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>〉</mo></mrow><mo>=</mo><mrow><mo>〈</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>〉</mo></mrow><mo>=</mo><mn>0</mn><mo>}</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> whereby <span><math><mi>C</mi></math></span> differs from the well-known nodal Nehari manifold due to the nonlocal character of the problem.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 4\",\"pages\":\"Article 110933\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625001156\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001156","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑退化Kirchhoff-type方程的形式−ϕ(Ξ(u)) ((u)−| | u p−2 u) = f (x, u)在Ω,ϕ(Ξ(u) B (u)⋅ν= g(∂x, u)Ω,哪里Ω⊆RN, N≥2,与李普希茨有限域边界∂Ω,表示双阶段运营商给面试官(u) = div(| |∇u p−2∇u +μ(x) |∇u | q−2∇u) u∈W1, H(Ω),ν(x)是Ω的外单位法在x∈∂Ω,B (u) = | |∇u p−2∇u +μ(x) |∇u | q−2∇u,Ξ(u) =∫Ω(|∇u p + | | |页+μ(x) |∇u | qq) dx, 1 & lt;术中,N,术中;q< p⁎= NpN型−p 0≤μ(⋅)∈L∞(Ω),ϕ(s) = A + Bζ−1 s∈R≥0,b> 0和ζ≥1,和f:Ω×R→R, g:∂Ω×R→R是超线性和亚临界增长的carathacimodory函数。在约束setC={u∈W1,H(Ω):u±≠0,< E ' (u),u+ > = < E ' (u),−u - > =0}上,我们基于变分方法和相关能量泛函E:W1,H(Ω)→R的最小化证明了上述问题的节点基态解的存在性,其中C与众所周知的节点Nehari流形由于问题的非局部特征而不同。
Degenerate Kirchhoff problems with nonlinear Neumann boundary condition
In this paper we consider degenerate Kirchhoff-type equations of the form where , , is a bounded domain with Lipschitz boundary ∂Ω, denotes the double phase operator given by for , is the outer unit normal of Ω at , , , , for with , and , and , are Carathéodory functions that grow superlinearly and subcritically. We prove the existence of a nodal ground state solution to the problem above, based on variational methods and minimization of the associated energy functional over the constraint set whereby differs from the well-known nodal Nehari manifold due to the nonlocal character of the problem.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis