循环三轴条件下有机质浸染砂的动模量与阻尼比

IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Juan Du , Xingfei Jiang , Bingyang Liu , Tao Li , Ningjun Jiang
{"title":"循环三轴条件下有机质浸染砂的动模量与阻尼比","authors":"Juan Du ,&nbsp;Xingfei Jiang ,&nbsp;Bingyang Liu ,&nbsp;Tao Li ,&nbsp;Ningjun Jiang","doi":"10.1016/j.sandf.2025.101616","DOIUrl":null,"url":null,"abstract":"<div><div>In Hainan Province, China, the unique geographical location presents significant challenges to the safety of coastal infrastructure due to complex dynamic loads such as waves, sea breeze and earthquake. A type of organic matter-rich and poorly graded organic-matter-disseminated sand (OMDS) is commonly found in this region. The existence of OMDS can reduce the bearing capacity of composite foundation and may even lead to structural failure. Currently, there is insufficient understanding regarding this type of sand. This article characterizes the dynamic parameters of OMDS through dynamic elastic modulus (<em>E</em><sub>d</sub>) and damping ratio (<em>λ</em>). A series of undrained cyclic triaxial shear tests were carried out on OMDS specimens with varying compaction energy, initial confining pressure and consolidation ratios. Based on these experiments, a modified Hardin-Drnevich model is presented to explain the dynamic constitutive relation. Furthermore, the impacts of compaction energy, initial confining pressure, and consolidation ratio on skeleton curve, <em>E</em><sub>d</sub>, normalized dynamic elastic modulus (<em>E</em><sub>d</sub>/<em>E</em><sub>dmax</sub>) and <em>λ</em> are systematically discussed. The results show that dynamic axial stress (<em>σ</em><sub>d</sub>), <em>E</em><sub>d</sub>, <em>E</em><sub>d</sub>/<em>E</em><sub>dmax</sub> and <em>λ</em> are all proportional to the compaction energy; lower compaction energy results in earlier stiffness deterioration. As confining pressure increases, <em>σ</em><sub>d</sub> and <em>E</em><sub>d</sub> rise, while <em>λ</em> decreases, with <em>E</em><sub>d</sub> /<em>E</em><sub>dmax</sub> being less affected. Finally, empirical models with respect of the varied parameters are proposed to estimate the maximum dynamic elastic modulus (<em>E</em><sub>dmax</sub>) and maximum damping ratio (<em>λ</em> <sub>max</sub>), yielding relatively accurate estimation results. This study provides new insights into the dynamic properties of bay facies sand enriched with organic matter, which may facilitate the design and application of this type of sand in coastal projects.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"65 3","pages":"Article 101616"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic modulus and damping ratio of organic-matter-disseminated sand under cyclic triaxial condition\",\"authors\":\"Juan Du ,&nbsp;Xingfei Jiang ,&nbsp;Bingyang Liu ,&nbsp;Tao Li ,&nbsp;Ningjun Jiang\",\"doi\":\"10.1016/j.sandf.2025.101616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In Hainan Province, China, the unique geographical location presents significant challenges to the safety of coastal infrastructure due to complex dynamic loads such as waves, sea breeze and earthquake. A type of organic matter-rich and poorly graded organic-matter-disseminated sand (OMDS) is commonly found in this region. The existence of OMDS can reduce the bearing capacity of composite foundation and may even lead to structural failure. Currently, there is insufficient understanding regarding this type of sand. This article characterizes the dynamic parameters of OMDS through dynamic elastic modulus (<em>E</em><sub>d</sub>) and damping ratio (<em>λ</em>). A series of undrained cyclic triaxial shear tests were carried out on OMDS specimens with varying compaction energy, initial confining pressure and consolidation ratios. Based on these experiments, a modified Hardin-Drnevich model is presented to explain the dynamic constitutive relation. Furthermore, the impacts of compaction energy, initial confining pressure, and consolidation ratio on skeleton curve, <em>E</em><sub>d</sub>, normalized dynamic elastic modulus (<em>E</em><sub>d</sub>/<em>E</em><sub>dmax</sub>) and <em>λ</em> are systematically discussed. The results show that dynamic axial stress (<em>σ</em><sub>d</sub>), <em>E</em><sub>d</sub>, <em>E</em><sub>d</sub>/<em>E</em><sub>dmax</sub> and <em>λ</em> are all proportional to the compaction energy; lower compaction energy results in earlier stiffness deterioration. As confining pressure increases, <em>σ</em><sub>d</sub> and <em>E</em><sub>d</sub> rise, while <em>λ</em> decreases, with <em>E</em><sub>d</sub> /<em>E</em><sub>dmax</sub> being less affected. Finally, empirical models with respect of the varied parameters are proposed to estimate the maximum dynamic elastic modulus (<em>E</em><sub>dmax</sub>) and maximum damping ratio (<em>λ</em> <sub>max</sub>), yielding relatively accurate estimation results. This study provides new insights into the dynamic properties of bay facies sand enriched with organic matter, which may facilitate the design and application of this type of sand in coastal projects.</div></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":\"65 3\",\"pages\":\"Article 101616\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038080625000502\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080625000502","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

在中国海南省,由于波浪、海风和地震等复杂的动力载荷,其独特的地理位置对沿海基础设施的安全提出了重大挑战。该地区普遍发育一种富有机质、低级配的浸染型有机质砂。OMDS的存在会降低复合地基的承载力,甚至可能导致结构破坏。目前,人们对这类砂的认识还不够充分。本文通过动态弹性模量(Ed)和阻尼比(λ)表征了OMDS的动态参数。对不同压实能、初始围压和固结比的OMDS试件进行了不排水循环三轴剪切试验。在此基础上,提出了一种修正的Hardin-Drnevich模型来解释动态本构关系。系统讨论了压实能、初始围压和固结比对骨架曲线、Ed、归一化动弹性模量(Ed/Edmax)和λ的影响。结果表明:动轴应力(σd)、Ed、Ed/Edmax和λ均与压实能成正比;较低的压实能量导致较早的刚度退化。随着围压的增大,σd和Ed增大,λ减小,Ed /Edmax受影响较小。最后,提出了不同参数下的最大动态弹性模量(Edmax)和最大阻尼比(λ max)的经验模型,得到了较为准确的估计结果。该研究为富有机质海湾相砂的动力学特性提供了新的认识,为该类砂在海岸工程中的设计和应用提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic modulus and damping ratio of organic-matter-disseminated sand under cyclic triaxial condition
In Hainan Province, China, the unique geographical location presents significant challenges to the safety of coastal infrastructure due to complex dynamic loads such as waves, sea breeze and earthquake. A type of organic matter-rich and poorly graded organic-matter-disseminated sand (OMDS) is commonly found in this region. The existence of OMDS can reduce the bearing capacity of composite foundation and may even lead to structural failure. Currently, there is insufficient understanding regarding this type of sand. This article characterizes the dynamic parameters of OMDS through dynamic elastic modulus (Ed) and damping ratio (λ). A series of undrained cyclic triaxial shear tests were carried out on OMDS specimens with varying compaction energy, initial confining pressure and consolidation ratios. Based on these experiments, a modified Hardin-Drnevich model is presented to explain the dynamic constitutive relation. Furthermore, the impacts of compaction energy, initial confining pressure, and consolidation ratio on skeleton curve, Ed, normalized dynamic elastic modulus (Ed/Edmax) and λ are systematically discussed. The results show that dynamic axial stress (σd), Ed, Ed/Edmax and λ are all proportional to the compaction energy; lower compaction energy results in earlier stiffness deterioration. As confining pressure increases, σd and Ed rise, while λ decreases, with Ed /Edmax being less affected. Finally, empirical models with respect of the varied parameters are proposed to estimate the maximum dynamic elastic modulus (Edmax) and maximum damping ratio (λ max), yielding relatively accurate estimation results. This study provides new insights into the dynamic properties of bay facies sand enriched with organic matter, which may facilitate the design and application of this type of sand in coastal projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soils and Foundations
Soils and Foundations 工程技术-地球科学综合
CiteScore
6.40
自引率
8.10%
发文量
99
审稿时长
5 months
期刊介绍: Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020. Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信