{"title":"濒危物种攀枝花苏铁在干旱、高温及其组合下的叶绿素荧光特性及脂质代谢","authors":"Jiao Yu , Fang Wang , Aiguo Jiang, Miaomiao Hu, Yanling Zheng","doi":"10.1016/j.plaphy.2025.109858","DOIUrl":null,"url":null,"abstract":"<div><div><em>Cycas panzhihuaensis</em>, an endangered species distributed in the dry-hot valleys of southwestern China, faces drought (D), heat (H), and their combination (DH) under current and future climatic conditions. To explore the responses of <em>C. panzhihuaensis</em> to D, H, and DH, chlorophyll fluorescence and the lipid and fatty acid profiles were determined. Leaf water loss and leaf damage only occurred following DH treatment. The photochemical activity was least impacted by D stress and most severely impacted by DH stress. D treatment reduced the levels of most lipid categories and total fatty acids. Both the H and DH treatments led to a significant decrease in the levels of saccharolipids, lysophospholipids, sphingolipids, and fatty acyls, while significantly increasing the levels of neutral glycerolipids and fatty acids. Moreover, odd-numbered fatty acids and <em>trans-</em>fatty acids-C18:2ttn-6 accumulated significantly following both H and DH treatments. However, the levels of both total fatty acids and total lipids were significantly lower after DH stress compared to H stress. The proportion of saturated fatty acids increased after D treatment and that of polyunsaturated fatty acids increased after both H and DH treatments. Following various treatments, the degree of unsaturation in total phospholipids decreased, while that in total saccharolipids remained unchanged. Additionally, the unsaturation levels of diacylglycerol and triacylglycerol showed no change after D stress, but increased after H and DH treatments. In conclusion, <em>C. panzhihuaensis</em> exhibited varying levels of tolerance to D, H, and DH treatments, which may be related to the differential adjustments in lipid composition and unsaturation levels.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"223 ","pages":"Article 109858"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chlorophyll fluorescence characteristics and lipid metabolism in endangered Cycas panzhihuaensis exposed to drought, high temperature and their combination1\",\"authors\":\"Jiao Yu , Fang Wang , Aiguo Jiang, Miaomiao Hu, Yanling Zheng\",\"doi\":\"10.1016/j.plaphy.2025.109858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Cycas panzhihuaensis</em>, an endangered species distributed in the dry-hot valleys of southwestern China, faces drought (D), heat (H), and their combination (DH) under current and future climatic conditions. To explore the responses of <em>C. panzhihuaensis</em> to D, H, and DH, chlorophyll fluorescence and the lipid and fatty acid profiles were determined. Leaf water loss and leaf damage only occurred following DH treatment. The photochemical activity was least impacted by D stress and most severely impacted by DH stress. D treatment reduced the levels of most lipid categories and total fatty acids. Both the H and DH treatments led to a significant decrease in the levels of saccharolipids, lysophospholipids, sphingolipids, and fatty acyls, while significantly increasing the levels of neutral glycerolipids and fatty acids. Moreover, odd-numbered fatty acids and <em>trans-</em>fatty acids-C18:2ttn-6 accumulated significantly following both H and DH treatments. However, the levels of both total fatty acids and total lipids were significantly lower after DH stress compared to H stress. The proportion of saturated fatty acids increased after D treatment and that of polyunsaturated fatty acids increased after both H and DH treatments. Following various treatments, the degree of unsaturation in total phospholipids decreased, while that in total saccharolipids remained unchanged. Additionally, the unsaturation levels of diacylglycerol and triacylglycerol showed no change after D stress, but increased after H and DH treatments. In conclusion, <em>C. panzhihuaensis</em> exhibited varying levels of tolerance to D, H, and DH treatments, which may be related to the differential adjustments in lipid composition and unsaturation levels.</div></div>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"223 \",\"pages\":\"Article 109858\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0981942825003869\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825003869","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Chlorophyll fluorescence characteristics and lipid metabolism in endangered Cycas panzhihuaensis exposed to drought, high temperature and their combination1
Cycas panzhihuaensis, an endangered species distributed in the dry-hot valleys of southwestern China, faces drought (D), heat (H), and their combination (DH) under current and future climatic conditions. To explore the responses of C. panzhihuaensis to D, H, and DH, chlorophyll fluorescence and the lipid and fatty acid profiles were determined. Leaf water loss and leaf damage only occurred following DH treatment. The photochemical activity was least impacted by D stress and most severely impacted by DH stress. D treatment reduced the levels of most lipid categories and total fatty acids. Both the H and DH treatments led to a significant decrease in the levels of saccharolipids, lysophospholipids, sphingolipids, and fatty acyls, while significantly increasing the levels of neutral glycerolipids and fatty acids. Moreover, odd-numbered fatty acids and trans-fatty acids-C18:2ttn-6 accumulated significantly following both H and DH treatments. However, the levels of both total fatty acids and total lipids were significantly lower after DH stress compared to H stress. The proportion of saturated fatty acids increased after D treatment and that of polyunsaturated fatty acids increased after both H and DH treatments. Following various treatments, the degree of unsaturation in total phospholipids decreased, while that in total saccharolipids remained unchanged. Additionally, the unsaturation levels of diacylglycerol and triacylglycerol showed no change after D stress, but increased after H and DH treatments. In conclusion, C. panzhihuaensis exhibited varying levels of tolerance to D, H, and DH treatments, which may be related to the differential adjustments in lipid composition and unsaturation levels.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.