槲皮素对模型蛋白牛血清白蛋白的稳定作用

IF 5.4 2区 医学 Q1 BIOPHYSICS
Amit G. Rathod , Priyanka Tiwari , Jatin Shaily, Sanjay Tiwari
{"title":"槲皮素对模型蛋白牛血清白蛋白的稳定作用","authors":"Amit G. Rathod ,&nbsp;Priyanka Tiwari ,&nbsp;Jatin Shaily,&nbsp;Sanjay Tiwari","doi":"10.1016/j.colsurfb.2025.114663","DOIUrl":null,"url":null,"abstract":"<div><div>Quercetin (QCT), an emerging class of flavonoid known for antioxidant and anti-inflammatory activities, has been studied for its protein stabilizing effect. After demonstrating ethanol (EtOH) - induced structural changes in bovine serum albumin (BSA), the stabilizing effect of QCT was studied using fluorescence, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopic techniques. Morphological changes were examined using atomic force microscopy (AFM). EtOH triggered blue shift in fluorescence spectra of BSA and its intensity increased at higher percentage of alcohol. A reversal in this trend was recorded in the presence of QCT. This was interpreted as anti-amyloidogenic effect emanating from the binding of QCT to hydrophobic pockets of BSA. The value of binding constant (1.25 x 10<sup>6</sup> M<sup>−1</sup>; 298 K) is suggestive of strong binding affinity of QCT for BSA. The mode of QCT-induced fluorescence quenching was found to be mixed in nature. CD spectra showed that the protein conformation was altered and traces of alpha helix disappeared in the presence of EtOH. Contrarily, disruptive effect of EtOH was not visible upon incorporating QCT. This was further verifiable form the thermal CD data, which showed an upshift in the denaturation temperature of BSA. The data of thioflavin T assay and AFM further substantiated the protective effect of QCT.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"252 ","pages":"Article 114663"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing effect of quercetin upon bovine serum albumin as a model protein\",\"authors\":\"Amit G. Rathod ,&nbsp;Priyanka Tiwari ,&nbsp;Jatin Shaily,&nbsp;Sanjay Tiwari\",\"doi\":\"10.1016/j.colsurfb.2025.114663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quercetin (QCT), an emerging class of flavonoid known for antioxidant and anti-inflammatory activities, has been studied for its protein stabilizing effect. After demonstrating ethanol (EtOH) - induced structural changes in bovine serum albumin (BSA), the stabilizing effect of QCT was studied using fluorescence, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopic techniques. Morphological changes were examined using atomic force microscopy (AFM). EtOH triggered blue shift in fluorescence spectra of BSA and its intensity increased at higher percentage of alcohol. A reversal in this trend was recorded in the presence of QCT. This was interpreted as anti-amyloidogenic effect emanating from the binding of QCT to hydrophobic pockets of BSA. The value of binding constant (1.25 x 10<sup>6</sup> M<sup>−1</sup>; 298 K) is suggestive of strong binding affinity of QCT for BSA. The mode of QCT-induced fluorescence quenching was found to be mixed in nature. CD spectra showed that the protein conformation was altered and traces of alpha helix disappeared in the presence of EtOH. Contrarily, disruptive effect of EtOH was not visible upon incorporating QCT. This was further verifiable form the thermal CD data, which showed an upshift in the denaturation temperature of BSA. The data of thioflavin T assay and AFM further substantiated the protective effect of QCT.</div></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"252 \",\"pages\":\"Article 114663\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776525001705\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525001705","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

槲皮素(QCT)是一类新兴的类黄酮,具有抗氧化和抗炎活性,其蛋白质稳定作用已被研究。在证明乙醇(EtOH)诱导牛血清白蛋白(BSA)结构变化后,利用荧光、圆二色(CD)和傅里叶变换红外(FTIR)光谱技术研究了QCT的稳定作用。用原子力显微镜(AFM)观察形态学变化。乙醇浓度越高,牛血清白蛋白荧光光谱蓝移越明显。在QCT的存在下,这一趋势发生了逆转。这被解释为抗淀粉样蛋白的作用是由QCT与牛血清白蛋白的疏水口袋结合而产生的。结合常数(1.25 × 106 M−1;298 K)提示QCT对BSA有很强的结合亲和力。发现qct诱导的荧光猝灭模式具有混合性。CD谱显示,EtOH的存在改变了蛋白质的构象,α螺旋的痕迹消失。相反,加入QCT后,EtOH的破坏效应不明显。热CD数据进一步证实了这一点,表明BSA的变性温度升高。硫黄酮T试验和AFM实验数据进一步证实了QCT的保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizing effect of quercetin upon bovine serum albumin as a model protein
Quercetin (QCT), an emerging class of flavonoid known for antioxidant and anti-inflammatory activities, has been studied for its protein stabilizing effect. After demonstrating ethanol (EtOH) - induced structural changes in bovine serum albumin (BSA), the stabilizing effect of QCT was studied using fluorescence, circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopic techniques. Morphological changes were examined using atomic force microscopy (AFM). EtOH triggered blue shift in fluorescence spectra of BSA and its intensity increased at higher percentage of alcohol. A reversal in this trend was recorded in the presence of QCT. This was interpreted as anti-amyloidogenic effect emanating from the binding of QCT to hydrophobic pockets of BSA. The value of binding constant (1.25 x 106 M−1; 298 K) is suggestive of strong binding affinity of QCT for BSA. The mode of QCT-induced fluorescence quenching was found to be mixed in nature. CD spectra showed that the protein conformation was altered and traces of alpha helix disappeared in the presence of EtOH. Contrarily, disruptive effect of EtOH was not visible upon incorporating QCT. This was further verifiable form the thermal CD data, which showed an upshift in the denaturation temperature of BSA. The data of thioflavin T assay and AFM further substantiated the protective effect of QCT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信