声学和电磁波束形状系数的新关系

IF 2.3 3区 物理与天体物理 Q2 OPTICS
Gérard Gouesbet , Jianqi Shen , Leonardo A. Ambrosio
{"title":"声学和电磁波束形状系数的新关系","authors":"Gérard Gouesbet ,&nbsp;Jianqi Shen ,&nbsp;Leonardo A. Ambrosio","doi":"10.1016/j.jqsrt.2025.109451","DOIUrl":null,"url":null,"abstract":"<div><div>It has been recently demonstrated that the electromagnetic beam shape coefficients <span><math><msubsup><mrow><mi>g</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>X</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> (<span><math><mrow><mi>X</mi><mo>=</mo><mi>T</mi><mi>M</mi></mrow></math></span> or <span><math><mrow><mi>T</mi><mi>E</mi></mrow></math></span>) which encode the structure of structured light beams may be expressed in terms of scalar, more specifically acoustical, beam shape coefficients. Because the technique used to obtain the relevant expressions relied on the properties of what is known as the finite series method, the aforementioned expressions were different, depending on whether <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>m</mi><mo>)</mo></mrow></math></span> is even or odd. For a reason discussed in the bulk of the paper, it became obvious that the expressions obtained for different parities of <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>m</mi><mo>)</mo></mrow></math></span> could be unified. Proceeding to such an unification, the expressions previously published were not only unified, but furthermore simplified, then allowing for an easier and less time-consuming numerical implementation.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"340 ","pages":"Article 109451"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New relationships relating acoustical and electromagnetic beam shape coefficients\",\"authors\":\"Gérard Gouesbet ,&nbsp;Jianqi Shen ,&nbsp;Leonardo A. Ambrosio\",\"doi\":\"10.1016/j.jqsrt.2025.109451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It has been recently demonstrated that the electromagnetic beam shape coefficients <span><math><msubsup><mrow><mi>g</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>X</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> (<span><math><mrow><mi>X</mi><mo>=</mo><mi>T</mi><mi>M</mi></mrow></math></span> or <span><math><mrow><mi>T</mi><mi>E</mi></mrow></math></span>) which encode the structure of structured light beams may be expressed in terms of scalar, more specifically acoustical, beam shape coefficients. Because the technique used to obtain the relevant expressions relied on the properties of what is known as the finite series method, the aforementioned expressions were different, depending on whether <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>m</mi><mo>)</mo></mrow></math></span> is even or odd. For a reason discussed in the bulk of the paper, it became obvious that the expressions obtained for different parities of <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>m</mi><mo>)</mo></mrow></math></span> could be unified. Proceeding to such an unification, the expressions previously published were not only unified, but furthermore simplified, then allowing for an easier and less time-consuming numerical implementation.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"340 \",\"pages\":\"Article 109451\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002240732500113X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240732500113X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

最近已经证明,编码结构光束结构的电磁波束形状系数gn,Xm (X=TM或TE)可以用标量,更具体地说是声学波束形状系数来表示。由于用于获得相关表达式的技术依赖于所谓的有限级数方法的性质,因此上述表达式是不同的,取决于(n−m)是偶数还是奇数。由于本文大部分讨论的原因,(n−m)的不同宇称的表达式显然可以统一。为了实现这样的统一,之前发布的表达式不仅统一,而且进一步简化,从而允许更容易和更少耗时的数值实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New relationships relating acoustical and electromagnetic beam shape coefficients
It has been recently demonstrated that the electromagnetic beam shape coefficients gn,Xm (X=TM or TE) which encode the structure of structured light beams may be expressed in terms of scalar, more specifically acoustical, beam shape coefficients. Because the technique used to obtain the relevant expressions relied on the properties of what is known as the finite series method, the aforementioned expressions were different, depending on whether (nm) is even or odd. For a reason discussed in the bulk of the paper, it became obvious that the expressions obtained for different parities of (nm) could be unified. Proceeding to such an unification, the expressions previously published were not only unified, but furthermore simplified, then allowing for an easier and less time-consuming numerical implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信