Inna A. Ivashchenko , Volodymyr V. Halyan , Lubomir D. Gulay , Anatoliy Zelinskiy , Filip Koper , Alicja Szymska-Szymanik , Paweł Dąbczyński , Małgorzata Makowska-Janusik , Katarzyna Matras-Postołek
{"title":"掺Er3+ CsPbBr3、CsPbI3钙钛矿晶体的GeS2-Ga2S3基玻璃陶瓷:Er³⁺掺杂对其光致发光性能的影响","authors":"Inna A. Ivashchenko , Volodymyr V. Halyan , Lubomir D. Gulay , Anatoliy Zelinskiy , Filip Koper , Alicja Szymska-Szymanik , Paweł Dąbczyński , Małgorzata Makowska-Janusik , Katarzyna Matras-Postołek","doi":"10.1016/j.materresbull.2025.113442","DOIUrl":null,"url":null,"abstract":"<div><div>Glass-ceramics containing perovskite crystals CsPbX<sub>3</sub> (X = Br, I) doped with Er<sup>3+</sup> were synthesized for the first time, using compositions of 80 mol.% GeS<sub>2</sub> − <strong>(5-y)</strong> mol.% Ga<sub>2</sub>S<sub>3</sub> − 15 mol.% CsPbX<sub>3</sub> <strong>(y</strong> = 0–3 mol.% Er<sub>2</sub>S<sub>3</sub>). These materials exhibit photoluminescence (PL) with maxima at 530 nm (X = Br) and 688 nm (X = I), supported by perovskite crystals. In CsPbBr<sub>3</sub> glass-ceramics, PL intensity decreases with Er<sup>3+</sup> doping due to a competing emission channel (660 nm) from Er<sup>3+</sup> ions. Under 532 nm excitation, additional PL bands appear in the IR range at 805, 985, and 1540 nm. <strong>In the case of CsPbI<sub>3</sub> glass-ceramics, excitation with 980 nm light produces Antistokes (650 nm) and Stokes (1540 nm) emissions.</strong> Computational density functional theory (DFT) simulations provided insights into the structural and electronic properties of pristine and Er-doped CsPbX<sub>3</sub> crystals. <strong>The glass-ceramics remained stable, maintaining their PL properties for over a month.</strong></div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"189 ","pages":"Article 113442"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GeS2-Ga2S3 based glass ceramics containing doped with Er3+ CsPbBr3, CsPbI3 perovskite crystals: Effect of Er³⁺ Doping on Their Photoluminescent Properties\",\"authors\":\"Inna A. Ivashchenko , Volodymyr V. Halyan , Lubomir D. Gulay , Anatoliy Zelinskiy , Filip Koper , Alicja Szymska-Szymanik , Paweł Dąbczyński , Małgorzata Makowska-Janusik , Katarzyna Matras-Postołek\",\"doi\":\"10.1016/j.materresbull.2025.113442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Glass-ceramics containing perovskite crystals CsPbX<sub>3</sub> (X = Br, I) doped with Er<sup>3+</sup> were synthesized for the first time, using compositions of 80 mol.% GeS<sub>2</sub> − <strong>(5-y)</strong> mol.% Ga<sub>2</sub>S<sub>3</sub> − 15 mol.% CsPbX<sub>3</sub> <strong>(y</strong> = 0–3 mol.% Er<sub>2</sub>S<sub>3</sub>). These materials exhibit photoluminescence (PL) with maxima at 530 nm (X = Br) and 688 nm (X = I), supported by perovskite crystals. In CsPbBr<sub>3</sub> glass-ceramics, PL intensity decreases with Er<sup>3+</sup> doping due to a competing emission channel (660 nm) from Er<sup>3+</sup> ions. Under 532 nm excitation, additional PL bands appear in the IR range at 805, 985, and 1540 nm. <strong>In the case of CsPbI<sub>3</sub> glass-ceramics, excitation with 980 nm light produces Antistokes (650 nm) and Stokes (1540 nm) emissions.</strong> Computational density functional theory (DFT) simulations provided insights into the structural and electronic properties of pristine and Er-doped CsPbX<sub>3</sub> crystals. <strong>The glass-ceramics remained stable, maintaining their PL properties for over a month.</strong></div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"189 \",\"pages\":\"Article 113442\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825001503\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825001503","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
GeS2-Ga2S3 based glass ceramics containing doped with Er3+ CsPbBr3, CsPbI3 perovskite crystals: Effect of Er³⁺ Doping on Their Photoluminescent Properties
Glass-ceramics containing perovskite crystals CsPbX3 (X = Br, I) doped with Er3+ were synthesized for the first time, using compositions of 80 mol.% GeS2 − (5-y) mol.% Ga2S3 − 15 mol.% CsPbX3(y = 0–3 mol.% Er2S3). These materials exhibit photoluminescence (PL) with maxima at 530 nm (X = Br) and 688 nm (X = I), supported by perovskite crystals. In CsPbBr3 glass-ceramics, PL intensity decreases with Er3+ doping due to a competing emission channel (660 nm) from Er3+ ions. Under 532 nm excitation, additional PL bands appear in the IR range at 805, 985, and 1540 nm. In the case of CsPbI3 glass-ceramics, excitation with 980 nm light produces Antistokes (650 nm) and Stokes (1540 nm) emissions. Computational density functional theory (DFT) simulations provided insights into the structural and electronic properties of pristine and Er-doped CsPbX3 crystals. The glass-ceramics remained stable, maintaining their PL properties for over a month.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.