{"title":"轴子量子涨落,暗能量,还有哈勃张力","authors":"L. Acedo","doi":"10.1016/j.astropartphys.2025.103111","DOIUrl":null,"url":null,"abstract":"<div><div>The cosmological constant is now a fundamental ingredient of the standard ΛCDM model, and its value is constrained by concordance with empirical data. Despite its importance in modern cosmology, we still do not understand its origin. A naive calculation of the contribution of the quantum vacuum fluctuations to vacuum energy (considering it to be the source of the cosmological constant) yields predictions 120 orders of magnitude larger than observations. This poses one of the most celebrated unsolved problems in physics and cosmology. This work discusses a model of quantum-thermal fluctuations of the cosmic microwave background with a Planck factor. Fluctuations of a bosonic field are studied, and we show that they could match the vacuum energy density if they correspond to an axionic field with a particle rest mass in the range of a fraction of a meV. This mass range is in agreement with present bounds on the mass of the Peccei–Quinn axions arising from the spontaneous symmetry breaking that explains CP conservation in strong interactions, as well as estimations of the mass of axions in the galactic halo and experiments on Shapiro step anomalies using Josephson junctions. We also show that this model can clarify the Hubble tension debate, i.e., the statistically significant discrepancy between measurements of the Hubble parameter based upon the cosmic microwave background and those using low redshift observations.</div></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"169 ","pages":"Article 103111"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axionic quantum fluctuations, dark energy, and the Hubble tension\",\"authors\":\"L. Acedo\",\"doi\":\"10.1016/j.astropartphys.2025.103111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The cosmological constant is now a fundamental ingredient of the standard ΛCDM model, and its value is constrained by concordance with empirical data. Despite its importance in modern cosmology, we still do not understand its origin. A naive calculation of the contribution of the quantum vacuum fluctuations to vacuum energy (considering it to be the source of the cosmological constant) yields predictions 120 orders of magnitude larger than observations. This poses one of the most celebrated unsolved problems in physics and cosmology. This work discusses a model of quantum-thermal fluctuations of the cosmic microwave background with a Planck factor. Fluctuations of a bosonic field are studied, and we show that they could match the vacuum energy density if they correspond to an axionic field with a particle rest mass in the range of a fraction of a meV. This mass range is in agreement with present bounds on the mass of the Peccei–Quinn axions arising from the spontaneous symmetry breaking that explains CP conservation in strong interactions, as well as estimations of the mass of axions in the galactic halo and experiments on Shapiro step anomalies using Josephson junctions. We also show that this model can clarify the Hubble tension debate, i.e., the statistically significant discrepancy between measurements of the Hubble parameter based upon the cosmic microwave background and those using low redshift observations.</div></div>\",\"PeriodicalId\":55439,\"journal\":{\"name\":\"Astroparticle Physics\",\"volume\":\"169 \",\"pages\":\"Article 103111\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927650525000349\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650525000349","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Axionic quantum fluctuations, dark energy, and the Hubble tension
The cosmological constant is now a fundamental ingredient of the standard ΛCDM model, and its value is constrained by concordance with empirical data. Despite its importance in modern cosmology, we still do not understand its origin. A naive calculation of the contribution of the quantum vacuum fluctuations to vacuum energy (considering it to be the source of the cosmological constant) yields predictions 120 orders of magnitude larger than observations. This poses one of the most celebrated unsolved problems in physics and cosmology. This work discusses a model of quantum-thermal fluctuations of the cosmic microwave background with a Planck factor. Fluctuations of a bosonic field are studied, and we show that they could match the vacuum energy density if they correspond to an axionic field with a particle rest mass in the range of a fraction of a meV. This mass range is in agreement with present bounds on the mass of the Peccei–Quinn axions arising from the spontaneous symmetry breaking that explains CP conservation in strong interactions, as well as estimations of the mass of axions in the galactic halo and experiments on Shapiro step anomalies using Josephson junctions. We also show that this model can clarify the Hubble tension debate, i.e., the statistically significant discrepancy between measurements of the Hubble parameter based upon the cosmic microwave background and those using low redshift observations.
期刊介绍:
Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.