Khac Huy Dinh, Leta Takele Menisa, Hugh Warkentin, Tu N. Nguyen* and Cao-Thang Dinh*,
{"title":"电化学CO2还原金属簇催化剂","authors":"Khac Huy Dinh, Leta Takele Menisa, Hugh Warkentin, Tu N. Nguyen* and Cao-Thang Dinh*, ","doi":"10.1021/acscatal.4c0795210.1021/acscatal.4c07952","DOIUrl":null,"url":null,"abstract":"<p >The manufacturing industry plays a critical role in the global economy, producing goods and materials essential for everyday life. However, this sector is also responsible for a significant environmental impact due to the overreliance on petrochemicals and fossil fuels. To mitigate CO<sub>2</sub> emissions in the manufacturing industry, electrochemical CO<sub>2</sub> reduction (ECR) is a potential solution, as it allows the production of many industrial chemicals using CO<sub>2</sub> waste and renewable electricity. In ECR, metal catalysts for the CO<sub>2</sub> reduction reaction have been the subject of intensive research in the last few decades. Theoretically, when the size of metal catalysts decreases, i.e., from bulk to nanoparticles, to polynuclear clusters, and to single atoms, the mass efficiency increases as more atoms are exposed and available for catalysis. Polynuclear metal clusters are a special case, as they straddle between the atomic world and the nanoscale materials. Unlike nanoparticles with a distribution of sizes, polynuclear metal clusters can have a well-defined structure. They often contain a few to tens of metal atoms/ions, which allows them to facilitate C–C couplings to obtain C<sub>2+</sub> products in ECR─a feat unattainable with single atoms. In this Perspective, we aim to bring together the knowledge from the field of polynuclear metal clusters and ECR, providing the background, the synthesis, and the characterization of polynuclear metal clusters before assessing their current applications in ECR. We discuss key insights from recent studies, with the focus on catalyst performance, selectivity, and the mechanisms driving these processes. Additionally, we highlight the major challenges and outline the steps needed to develop more efficient CO<sub>2</sub> reduction catalysts. Our aim is to encourage further research into the design of highly active and selective catalysts for ECR using polynuclear metal clusters.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 7","pages":"5731–5759 5731–5759"},"PeriodicalIF":13.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal Cluster Catalysts for Electrochemical CO2 Reduction\",\"authors\":\"Khac Huy Dinh, Leta Takele Menisa, Hugh Warkentin, Tu N. Nguyen* and Cao-Thang Dinh*, \",\"doi\":\"10.1021/acscatal.4c0795210.1021/acscatal.4c07952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The manufacturing industry plays a critical role in the global economy, producing goods and materials essential for everyday life. However, this sector is also responsible for a significant environmental impact due to the overreliance on petrochemicals and fossil fuels. To mitigate CO<sub>2</sub> emissions in the manufacturing industry, electrochemical CO<sub>2</sub> reduction (ECR) is a potential solution, as it allows the production of many industrial chemicals using CO<sub>2</sub> waste and renewable electricity. In ECR, metal catalysts for the CO<sub>2</sub> reduction reaction have been the subject of intensive research in the last few decades. Theoretically, when the size of metal catalysts decreases, i.e., from bulk to nanoparticles, to polynuclear clusters, and to single atoms, the mass efficiency increases as more atoms are exposed and available for catalysis. Polynuclear metal clusters are a special case, as they straddle between the atomic world and the nanoscale materials. Unlike nanoparticles with a distribution of sizes, polynuclear metal clusters can have a well-defined structure. They often contain a few to tens of metal atoms/ions, which allows them to facilitate C–C couplings to obtain C<sub>2+</sub> products in ECR─a feat unattainable with single atoms. In this Perspective, we aim to bring together the knowledge from the field of polynuclear metal clusters and ECR, providing the background, the synthesis, and the characterization of polynuclear metal clusters before assessing their current applications in ECR. We discuss key insights from recent studies, with the focus on catalyst performance, selectivity, and the mechanisms driving these processes. Additionally, we highlight the major challenges and outline the steps needed to develop more efficient CO<sub>2</sub> reduction catalysts. Our aim is to encourage further research into the design of highly active and selective catalysts for ECR using polynuclear metal clusters.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"15 7\",\"pages\":\"5731–5759 5731–5759\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.4c07952\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c07952","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Metal Cluster Catalysts for Electrochemical CO2 Reduction
The manufacturing industry plays a critical role in the global economy, producing goods and materials essential for everyday life. However, this sector is also responsible for a significant environmental impact due to the overreliance on petrochemicals and fossil fuels. To mitigate CO2 emissions in the manufacturing industry, electrochemical CO2 reduction (ECR) is a potential solution, as it allows the production of many industrial chemicals using CO2 waste and renewable electricity. In ECR, metal catalysts for the CO2 reduction reaction have been the subject of intensive research in the last few decades. Theoretically, when the size of metal catalysts decreases, i.e., from bulk to nanoparticles, to polynuclear clusters, and to single atoms, the mass efficiency increases as more atoms are exposed and available for catalysis. Polynuclear metal clusters are a special case, as they straddle between the atomic world and the nanoscale materials. Unlike nanoparticles with a distribution of sizes, polynuclear metal clusters can have a well-defined structure. They often contain a few to tens of metal atoms/ions, which allows them to facilitate C–C couplings to obtain C2+ products in ECR─a feat unattainable with single atoms. In this Perspective, we aim to bring together the knowledge from the field of polynuclear metal clusters and ECR, providing the background, the synthesis, and the characterization of polynuclear metal clusters before assessing their current applications in ECR. We discuss key insights from recent studies, with the focus on catalyst performance, selectivity, and the mechanisms driving these processes. Additionally, we highlight the major challenges and outline the steps needed to develop more efficient CO2 reduction catalysts. Our aim is to encourage further research into the design of highly active and selective catalysts for ECR using polynuclear metal clusters.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.