矿化细菌作为金黄色葡萄球菌感染的有效疫苗

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-03 DOI:10.1002/smll.202412279
Xiaojing Chen, Shiyuan Zhang, Chenya Wang, Ting Chao, Jiacheng Ren, Feng Gao, Zhuang Liu, Rui Peng
{"title":"矿化细菌作为金黄色葡萄球菌感染的有效疫苗","authors":"Xiaojing Chen, Shiyuan Zhang, Chenya Wang, Ting Chao, Jiacheng Ren, Feng Gao, Zhuang Liu, Rui Peng","doi":"10.1002/smll.202412279","DOIUrl":null,"url":null,"abstract":"<i>Staphylococcus aureus</i> (<i>S. aureus</i>) as common Gram-positive pathogenic bacteria, causes local and systemic infections, including sepsis and bacteremia. In particular, the high prevalence of drug-resistant <i>S. aureus</i> further complicates the post-infection treatment. Highly effective <i>S. aureus</i> vaccines are urgently desired. Herein, a novel <i>S. aureus</i> vaccine (MnO<sub>2</sub>@FS) is developed via biomineralizing manganese dioxide (MnO<sub>2</sub>) on formaldehyde-fixed <i>S. aureus</i> (FS). In such vaccine, with FS to induce bacteria-specific immune responses, MnO<sub>2</sub> via releasing Mn<sup>2+</sup> can activate the cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) pathway and innate immunity, which would be rather helpful to enhance immune responses against bacterial infections. It is found that bone marrow-derived dendritic cells (BMDCs) treated with MnO<sub>2</sub>@FS show higher FS and manganese uptake, and enhanced cytokine secretions. In mice, after being immunized with MnO<sub>2</sub>@FS, the level of <i>S. aureus</i>-specific antibody is significantly improved compared with FS and simple mixture of FS and MnO<sub>2</sub> (FS+MnO<sub>2</sub>). Furthermore, MnO<sub>2</sub>@FS immunized mice can clear infected bacteria faster and showing higher survival rate in lethal models, outperforming FS and FS+MnO<sub>2</sub> immunizations. In addition, the vaccine effectively controls abscess development in a hospital-acquired <i>S. aureus</i> infection model. This study thus presents a new strategy for the construction of highly potent yet safe bacterial vaccines.","PeriodicalId":228,"journal":{"name":"Small","volume":"73 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mineralized Bacteria as a Potent Vaccine Against Staphylococcus aureus Infections\",\"authors\":\"Xiaojing Chen, Shiyuan Zhang, Chenya Wang, Ting Chao, Jiacheng Ren, Feng Gao, Zhuang Liu, Rui Peng\",\"doi\":\"10.1002/smll.202412279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Staphylococcus aureus</i> (<i>S. aureus</i>) as common Gram-positive pathogenic bacteria, causes local and systemic infections, including sepsis and bacteremia. In particular, the high prevalence of drug-resistant <i>S. aureus</i> further complicates the post-infection treatment. Highly effective <i>S. aureus</i> vaccines are urgently desired. Herein, a novel <i>S. aureus</i> vaccine (MnO<sub>2</sub>@FS) is developed via biomineralizing manganese dioxide (MnO<sub>2</sub>) on formaldehyde-fixed <i>S. aureus</i> (FS). In such vaccine, with FS to induce bacteria-specific immune responses, MnO<sub>2</sub> via releasing Mn<sup>2+</sup> can activate the cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) pathway and innate immunity, which would be rather helpful to enhance immune responses against bacterial infections. It is found that bone marrow-derived dendritic cells (BMDCs) treated with MnO<sub>2</sub>@FS show higher FS and manganese uptake, and enhanced cytokine secretions. In mice, after being immunized with MnO<sub>2</sub>@FS, the level of <i>S. aureus</i>-specific antibody is significantly improved compared with FS and simple mixture of FS and MnO<sub>2</sub> (FS+MnO<sub>2</sub>). Furthermore, MnO<sub>2</sub>@FS immunized mice can clear infected bacteria faster and showing higher survival rate in lethal models, outperforming FS and FS+MnO<sub>2</sub> immunizations. In addition, the vaccine effectively controls abscess development in a hospital-acquired <i>S. aureus</i> infection model. This study thus presents a new strategy for the construction of highly potent yet safe bacterial vaccines.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202412279\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202412279","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金黄色葡萄球菌(S. aureus)是常见的革兰氏阳性致病菌,可引起局部和全身感染,包括败血症和菌血症。特别是,耐药金黄色葡萄球菌的高流行率进一步使感染后治疗复杂化。迫切需要高效的金黄色葡萄球菌疫苗。本文通过在甲醛固定的金黄色葡萄球菌(FS)上生物矿化二氧化锰(MnO2),开发了一种新型金黄色葡萄球菌疫苗(MnO2@FS)。在该疫苗中,利用FS诱导细菌特异性免疫应答,MnO2通过释放Mn2+激活干扰素基因环GMP-AMP合成酶刺激因子(cGAS-STING)通路和先天免疫,有助于增强对细菌感染的免疫应答。研究发现,MnO2@FS处理的骨髓源树突状细胞(bmdc)表现出更高的FS和锰摄取,并增强细胞因子分泌。在小鼠体内,用MnO2@FS免疫后,金黄色葡萄球菌特异性抗体水平比FS和FS与MnO2的简单混合物(FS+MnO2)明显提高。此外,MnO2@FS免疫小鼠在致死性模型中可以更快地清除感染细菌,并表现出更高的存活率,优于FS和FS+MnO2免疫。此外,该疫苗有效控制医院获得性金黄色葡萄球菌感染模型的脓肿发展。因此,本研究提出了一种构建高效安全细菌疫苗的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mineralized Bacteria as a Potent Vaccine Against Staphylococcus aureus Infections

Mineralized Bacteria as a Potent Vaccine Against Staphylococcus aureus Infections
Staphylococcus aureus (S. aureus) as common Gram-positive pathogenic bacteria, causes local and systemic infections, including sepsis and bacteremia. In particular, the high prevalence of drug-resistant S. aureus further complicates the post-infection treatment. Highly effective S. aureus vaccines are urgently desired. Herein, a novel S. aureus vaccine (MnO2@FS) is developed via biomineralizing manganese dioxide (MnO2) on formaldehyde-fixed S. aureus (FS). In such vaccine, with FS to induce bacteria-specific immune responses, MnO2 via releasing Mn2+ can activate the cyclic GMP-AMP synthase-stimulator of interferon gene (cGAS-STING) pathway and innate immunity, which would be rather helpful to enhance immune responses against bacterial infections. It is found that bone marrow-derived dendritic cells (BMDCs) treated with MnO2@FS show higher FS and manganese uptake, and enhanced cytokine secretions. In mice, after being immunized with MnO2@FS, the level of S. aureus-specific antibody is significantly improved compared with FS and simple mixture of FS and MnO2 (FS+MnO2). Furthermore, MnO2@FS immunized mice can clear infected bacteria faster and showing higher survival rate in lethal models, outperforming FS and FS+MnO2 immunizations. In addition, the vaccine effectively controls abscess development in a hospital-acquired S. aureus infection model. This study thus presents a new strategy for the construction of highly potent yet safe bacterial vaccines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信