硅微粒阳极用超分子两性离子网络增韧的机械响应弹性粘结剂

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Wenqi Li, Yingdong Chen, Tao Chen, Jing Zhao, Qianjin Zhang, Wei Chen, Mingchang Zhang, Haitao Gu and Jiajun Fu
{"title":"硅微粒阳极用超分子两性离子网络增韧的机械响应弹性粘结剂","authors":"Wenqi Li, Yingdong Chen, Tao Chen, Jing Zhao, Qianjin Zhang, Wei Chen, Mingchang Zhang, Haitao Gu and Jiajun Fu","doi":"10.1039/D4TA08921A","DOIUrl":null,"url":null,"abstract":"<p >Silicon microparticle (SiMP) anodes are promising candidates for lithium-ion and post-lithium-ion batteries owing to their fewer interfacial reactions and higher tap density than nanostructured silicon anodes. However, the intractable volume expansion/contraction of micro-sized silicon upon cycling results in severe particle pulverization/disintegration and an unstable solid-electrolyte interphase. Binders play an essential role in dissipating huge mechanical stress and promoting the lithium-ion diffusion kinetics of silicon anodes. Herein, we design a mechanoresponsive dual cross-linking elastomeric network that incorporates a supramolecular zwitterionic reorganizable network into a hydrogen-bonded polyacrylic acid network to stabilize the interphase and improve cycling stability of silicon microparticle anodes. Such dual-network design enables effective stress dissipation and spontaneous crack repair <em>via</em> sequential dissociation of weak supramolecular zwitterionic interaction and strong dimeric H-bonds of zwitterions upon repeated lithiation/delithiation. Benefiting from these merits, the resultant SiMP anodes using the mechanoresponsive elastomeric binder exhibit a high reversible capacity of 1625.1 mA h g<small><sup>−1</sup></small> at 2.0 A g<small><sup>−1</sup></small> after 400 cycles. The assembled full cells with LiNi<small><sub>0.8</sub></small>Mn<small><sub>0.1</sub></small>Co<small><sub>0.1</sub></small>O<small><sub>2</sub></small> cathodes afford a reversible capacity of 105.2 mA h g<small><sup>−1</sup></small> after 100 cycles. This work demonstrates the great potential of mechanoresponsive elastomeric binders in developing state-of-the-art high-performance silicon microparticle anodes toward high-energy-density lithium-battery applications.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 19","pages":" 14324-14334"},"PeriodicalIF":9.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mechanoresponsive elastomeric binder toughened using a supramolecular zwitterionic network for silicon microparticle anodes†\",\"authors\":\"Wenqi Li, Yingdong Chen, Tao Chen, Jing Zhao, Qianjin Zhang, Wei Chen, Mingchang Zhang, Haitao Gu and Jiajun Fu\",\"doi\":\"10.1039/D4TA08921A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Silicon microparticle (SiMP) anodes are promising candidates for lithium-ion and post-lithium-ion batteries owing to their fewer interfacial reactions and higher tap density than nanostructured silicon anodes. However, the intractable volume expansion/contraction of micro-sized silicon upon cycling results in severe particle pulverization/disintegration and an unstable solid-electrolyte interphase. Binders play an essential role in dissipating huge mechanical stress and promoting the lithium-ion diffusion kinetics of silicon anodes. Herein, we design a mechanoresponsive dual cross-linking elastomeric network that incorporates a supramolecular zwitterionic reorganizable network into a hydrogen-bonded polyacrylic acid network to stabilize the interphase and improve cycling stability of silicon microparticle anodes. Such dual-network design enables effective stress dissipation and spontaneous crack repair <em>via</em> sequential dissociation of weak supramolecular zwitterionic interaction and strong dimeric H-bonds of zwitterions upon repeated lithiation/delithiation. Benefiting from these merits, the resultant SiMP anodes using the mechanoresponsive elastomeric binder exhibit a high reversible capacity of 1625.1 mA h g<small><sup>−1</sup></small> at 2.0 A g<small><sup>−1</sup></small> after 400 cycles. The assembled full cells with LiNi<small><sub>0.8</sub></small>Mn<small><sub>0.1</sub></small>Co<small><sub>0.1</sub></small>O<small><sub>2</sub></small> cathodes afford a reversible capacity of 105.2 mA h g<small><sup>−1</sup></small> after 100 cycles. This work demonstrates the great potential of mechanoresponsive elastomeric binders in developing state-of-the-art high-performance silicon microparticle anodes toward high-energy-density lithium-battery applications.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 19\",\"pages\":\" 14324-14334\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta08921a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta08921a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硅微粒(SiMP)阳极具有比纳米结构硅阳极更少的界面反应和更高的接枝密度,是锂离子和后锂离子电池的有前途的候选材料。然而,微尺寸硅在循环过程中难以控制的体积膨胀/收缩导致了严重的颗粒粉碎/解体和不稳定的固-电解质界面。粘结剂在消除硅阳极的巨大机械应力和促进锂离子扩散动力学方面起着至关重要的作用。在此,我们设计了一种机械响应的双交联弹性网络,将超分子两性离子可重组网络融入到氢键聚丙烯酸网络中,以稳定界面并提高硅微粒阳极的循环稳定性。这种双网络设计通过反复锂化/去锂化的弱超分子两性离子相互作用和两性离子强二聚氢键的顺序解离,实现了有效的应力耗散和自发裂纹修复。得益于这些优点,使用机械响应弹性粘合剂的SiMP阳极在2.0 a g−1下经过400次循环后显示出1625.1 mAh g−1的高可逆容量。以LiNi0.8Mn0.1Co0.1O2阴极组装的电池在100次循环后的可逆容量为105.2 mAh g−1。这项工作证明了机械响应弹性粘结剂在开发高性能硅微粒阳极用于高能量密度锂电池方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A mechanoresponsive elastomeric binder toughened using a supramolecular zwitterionic network for silicon microparticle anodes†

A mechanoresponsive elastomeric binder toughened using a supramolecular zwitterionic network for silicon microparticle anodes†

Silicon microparticle (SiMP) anodes are promising candidates for lithium-ion and post-lithium-ion batteries owing to their fewer interfacial reactions and higher tap density than nanostructured silicon anodes. However, the intractable volume expansion/contraction of micro-sized silicon upon cycling results in severe particle pulverization/disintegration and an unstable solid-electrolyte interphase. Binders play an essential role in dissipating huge mechanical stress and promoting the lithium-ion diffusion kinetics of silicon anodes. Herein, we design a mechanoresponsive dual cross-linking elastomeric network that incorporates a supramolecular zwitterionic reorganizable network into a hydrogen-bonded polyacrylic acid network to stabilize the interphase and improve cycling stability of silicon microparticle anodes. Such dual-network design enables effective stress dissipation and spontaneous crack repair via sequential dissociation of weak supramolecular zwitterionic interaction and strong dimeric H-bonds of zwitterions upon repeated lithiation/delithiation. Benefiting from these merits, the resultant SiMP anodes using the mechanoresponsive elastomeric binder exhibit a high reversible capacity of 1625.1 mA h g−1 at 2.0 A g−1 after 400 cycles. The assembled full cells with LiNi0.8Mn0.1Co0.1O2 cathodes afford a reversible capacity of 105.2 mA h g−1 after 100 cycles. This work demonstrates the great potential of mechanoresponsive elastomeric binders in developing state-of-the-art high-performance silicon microparticle anodes toward high-energy-density lithium-battery applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信