双层WO3光阳极对含氟污染物的光电催化降解机理:空穴和羟基自由基的协同作用

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qiuling Ma, Dongfeng Li, Fujun Ren, Wensheng Gao, Rui Song, Zelong Li, Can Li
{"title":"双层WO3光阳极对含氟污染物的光电催化降解机理:空穴和羟基自由基的协同作用","authors":"Qiuling Ma,&nbsp;Dongfeng Li,&nbsp;Fujun Ren,&nbsp;Wensheng Gao,&nbsp;Rui Song,&nbsp;Zelong Li,&nbsp;Can Li","doi":"10.1002/anie.202506322","DOIUrl":null,"url":null,"abstract":"<p>Fluorinated organic pollutants pose significant environmental and health risks due to the high stability of C─F bonds, necessitating effective strategies for their degradation. Herein, we present a bilayer WO<sub>3</sub> photoelectrode (double-WO<sub>3</sub>) incorporating an electron transport layer (ETL) and a hexagonal-monoclinic heterophase junction for PEC degradation of fluorinated pollutants. The double-WO₃ catalyst achieves a high photocurrent density (4.3 mA cm<sup>−2</sup> at 1.2 V<sub>RHE</sub>) and nearly complete degradation (99.9%) of bisphenol AF (BPAF), 4-fluorophenol (4-FP), and pentafluorophenol (PFP), with 99.9% mineralization of PFP. Experimental and transient photocurrent (TPC) analyses confirm that the ETL-heterophase junction structure enhances electron extraction and surface reaction kinetics while minimizing electron-hole recombination. In this process, photogenerated h⁺ excites fluorinated pollutants, enhancing C─F bond susceptibility to ∙OH attack, which facilitates bond cleavage and subsequent oxidation into CO<sub>2</sub>, H<sub>2</sub>O, and F<sup>−</sup>. This study offers a promising strategy for designing advanced PEC systems and effectively remediating persistent fluorinated contaminants.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 25","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoelectrocatalytic Degradation Mechanism of Fluorinated Pollutants Using a Bilayer WO3 Photoanode: Synergistic Role of Holes and Hydroxyl Radicals\",\"authors\":\"Qiuling Ma,&nbsp;Dongfeng Li,&nbsp;Fujun Ren,&nbsp;Wensheng Gao,&nbsp;Rui Song,&nbsp;Zelong Li,&nbsp;Can Li\",\"doi\":\"10.1002/anie.202506322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fluorinated organic pollutants pose significant environmental and health risks due to the high stability of C─F bonds, necessitating effective strategies for their degradation. Herein, we present a bilayer WO<sub>3</sub> photoelectrode (double-WO<sub>3</sub>) incorporating an electron transport layer (ETL) and a hexagonal-monoclinic heterophase junction for PEC degradation of fluorinated pollutants. The double-WO₃ catalyst achieves a high photocurrent density (4.3 mA cm<sup>−2</sup> at 1.2 V<sub>RHE</sub>) and nearly complete degradation (99.9%) of bisphenol AF (BPAF), 4-fluorophenol (4-FP), and pentafluorophenol (PFP), with 99.9% mineralization of PFP. Experimental and transient photocurrent (TPC) analyses confirm that the ETL-heterophase junction structure enhances electron extraction and surface reaction kinetics while minimizing electron-hole recombination. In this process, photogenerated h⁺ excites fluorinated pollutants, enhancing C─F bond susceptibility to ∙OH attack, which facilitates bond cleavage and subsequent oxidation into CO<sub>2</sub>, H<sub>2</sub>O, and F<sup>−</sup>. This study offers a promising strategy for designing advanced PEC systems and effectively remediating persistent fluorinated contaminants.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 25\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202506322\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202506322","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氟化有机污染物由于碳-氟键的高稳定性,对环境和健康构成重大风险,因此需要有效的降解策略。在此,我们提出了一种双层WO3光电极(双WO3),包含电子传输层(ETL)和六边形-单斜异相结,用于PEC降解氟化污染物。双wo3催化剂在1.2 VRHE下具有较高的光电流密度(4.3 mA cm-2),对双酚AF (BPAF)、4-氟苯酚(4-FP)和五氟苯酚(PFP)几乎完全降解(99.9%),PFP矿化率为99.9%。实验和瞬态光电流(TPC)分析证实,etl -异相结结构增强了电子提取和表面反应动力学,同时最大限度地减少了电子-空穴复合。在这一过程中,光生成的h+激发了含氟污染物,增强了C-F键对∙OH攻击的敏感性,从而促进了键的断裂和随后氧化成CO2、H2O和F-。本研究为设计先进的PEC系统和有效地修复持久性氟污染物提供了有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photoelectrocatalytic Degradation Mechanism of Fluorinated Pollutants Using a Bilayer WO3 Photoanode: Synergistic Role of Holes and Hydroxyl Radicals

Photoelectrocatalytic Degradation Mechanism of Fluorinated Pollutants Using a Bilayer WO3 Photoanode: Synergistic Role of Holes and Hydroxyl Radicals

Fluorinated organic pollutants pose significant environmental and health risks due to the high stability of C─F bonds, necessitating effective strategies for their degradation. Herein, we present a bilayer WO3 photoelectrode (double-WO3) incorporating an electron transport layer (ETL) and a hexagonal-monoclinic heterophase junction for PEC degradation of fluorinated pollutants. The double-WO₃ catalyst achieves a high photocurrent density (4.3 mA cm−2 at 1.2 VRHE) and nearly complete degradation (99.9%) of bisphenol AF (BPAF), 4-fluorophenol (4-FP), and pentafluorophenol (PFP), with 99.9% mineralization of PFP. Experimental and transient photocurrent (TPC) analyses confirm that the ETL-heterophase junction structure enhances electron extraction and surface reaction kinetics while minimizing electron-hole recombination. In this process, photogenerated h⁺ excites fluorinated pollutants, enhancing C─F bond susceptibility to ∙OH attack, which facilitates bond cleavage and subsequent oxidation into CO2, H2O, and F. This study offers a promising strategy for designing advanced PEC systems and effectively remediating persistent fluorinated contaminants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信