Jiawei Su, Zhuoya Yu, Zhengji Yin, Zixuan Zhang, Jun Zhao, Yufei Meng, Renjie Li, Yiwei Gao, Hongwei Zhang, Rilei Yu, Yan Zhao
{"title":"α6β4烟碱乙酰胆碱受体功能和配体识别的分子见解","authors":"Jiawei Su, Zhuoya Yu, Zhengji Yin, Zixuan Zhang, Jun Zhao, Yufei Meng, Renjie Li, Yiwei Gao, Hongwei Zhang, Rilei Yu, Yan Zhao","doi":"10.1038/s41467-025-58333-0","DOIUrl":null,"url":null,"abstract":"<p>The α6β4 nicotinic acetylcholine receptor (nAChR) is found in the sensory neurons of dorsal root ganglia. It is a promising therapeutic target for pain. However, the difficultly of heterologous functional expression of α6β4 receptor has hindered the discovery of drugs that target it. Here, we functionally express the human α6β4 receptor and determine the cryo-EM structures of α6β4 receptor in complex with its agonists, nicotine and the preclinical drug tebanicline. These structures were captured in non-conducting desensitized states. We elucidate that the stoichiometry of α- and β- subunits in the α6β4 receptor is 2α6:3β4. Furthermore, we identify the binding pockets for nicotine and tebanicline, demonstrating the essential residues contributing to ligand affinity and providing detailed molecular insights into why these agonists have different binding affinities despite both occupying the orthosteric site of the α6β4 receptor. These structures offer significant molecular insight into the function and ligand recognition of α6β4 receptor.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"58 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular insights into the α6β4 nicotinic acetylcholine receptor function and ligand recognition\",\"authors\":\"Jiawei Su, Zhuoya Yu, Zhengji Yin, Zixuan Zhang, Jun Zhao, Yufei Meng, Renjie Li, Yiwei Gao, Hongwei Zhang, Rilei Yu, Yan Zhao\",\"doi\":\"10.1038/s41467-025-58333-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The α6β4 nicotinic acetylcholine receptor (nAChR) is found in the sensory neurons of dorsal root ganglia. It is a promising therapeutic target for pain. However, the difficultly of heterologous functional expression of α6β4 receptor has hindered the discovery of drugs that target it. Here, we functionally express the human α6β4 receptor and determine the cryo-EM structures of α6β4 receptor in complex with its agonists, nicotine and the preclinical drug tebanicline. These structures were captured in non-conducting desensitized states. We elucidate that the stoichiometry of α- and β- subunits in the α6β4 receptor is 2α6:3β4. Furthermore, we identify the binding pockets for nicotine and tebanicline, demonstrating the essential residues contributing to ligand affinity and providing detailed molecular insights into why these agonists have different binding affinities despite both occupying the orthosteric site of the α6β4 receptor. These structures offer significant molecular insight into the function and ligand recognition of α6β4 receptor.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58333-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58333-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Molecular insights into the α6β4 nicotinic acetylcholine receptor function and ligand recognition
The α6β4 nicotinic acetylcholine receptor (nAChR) is found in the sensory neurons of dorsal root ganglia. It is a promising therapeutic target for pain. However, the difficultly of heterologous functional expression of α6β4 receptor has hindered the discovery of drugs that target it. Here, we functionally express the human α6β4 receptor and determine the cryo-EM structures of α6β4 receptor in complex with its agonists, nicotine and the preclinical drug tebanicline. These structures were captured in non-conducting desensitized states. We elucidate that the stoichiometry of α- and β- subunits in the α6β4 receptor is 2α6:3β4. Furthermore, we identify the binding pockets for nicotine and tebanicline, demonstrating the essential residues contributing to ligand affinity and providing detailed molecular insights into why these agonists have different binding affinities despite both occupying the orthosteric site of the α6β4 receptor. These structures offer significant molecular insight into the function and ligand recognition of α6β4 receptor.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.