{"title":"Star Polymer Network Elastomer with Reconfigurable Network Structure via Covalent Bond Exchange through Olefin Metathesis","authors":"Renan Sasaki, Naoko Yoshie, Shintaro Nakagawa","doi":"10.1021/acsmacrolett.5c00135","DOIUrl":null,"url":null,"abstract":"A covalent adaptable network (CAN) elastomer with a well-defined network structure was fabricated by end-linking monodisperse star polymers via associative dynamic covalent bonds (DCBs). Monodisperse 4-arm star-shaped polyesters with vinyl end groups were synthesized and end-linked by an olefin metathesis reaction, yielding an elastomer with a uniform chain length between cross-links. The well-defined network structure endowed the elastomer with good mechanical properties. The remaining C═C bonds in the network could exchange via olefin metathesis, rendering the network structure reconfigurable. As a result, the elastomer showed stress relaxation and was thermally reprocessable. Moreover, the elastomer was chemically degradable into un-cross-linked polymers under mild conditions through C═C bond exchange. This study demonstrates mechanical robustness and dynamicity in rubbery materials through the combination of a well-defined network structure and associative DCBs.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"34 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.5c00135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Star Polymer Network Elastomer with Reconfigurable Network Structure via Covalent Bond Exchange through Olefin Metathesis
A covalent adaptable network (CAN) elastomer with a well-defined network structure was fabricated by end-linking monodisperse star polymers via associative dynamic covalent bonds (DCBs). Monodisperse 4-arm star-shaped polyesters with vinyl end groups were synthesized and end-linked by an olefin metathesis reaction, yielding an elastomer with a uniform chain length between cross-links. The well-defined network structure endowed the elastomer with good mechanical properties. The remaining C═C bonds in the network could exchange via olefin metathesis, rendering the network structure reconfigurable. As a result, the elastomer showed stress relaxation and was thermally reprocessable. Moreover, the elastomer was chemically degradable into un-cross-linked polymers under mild conditions through C═C bond exchange. This study demonstrates mechanical robustness and dynamicity in rubbery materials through the combination of a well-defined network structure and associative DCBs.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.