Tahsin Özer, Murat Çanlı, Nihat Arıkan, Ali İhsan Öztürk
{"title":"通过第一性原理计算研究全赫斯勒 MgXY2(X = Zn、Cd,Y = Ag、Au、Cu)化合物的结构、弹性和热力学性质","authors":"Tahsin Özer, Murat Çanlı, Nihat Arıkan, Ali İhsan Öztürk","doi":"10.1016/j.jma.2025.03.012","DOIUrl":null,"url":null,"abstract":"Magnesium and its compounds are recognized as favorable materials for structural uses, primarily due to their lightweight nature and remarkable specific strength. This research employed first-principles methodologies to investigate how pressure affects the crystal structure along with the elastic and thermodynamic characteristics of MgXY<sub>2</sub> (<em>X</em>=Zn, Cd, and <em>Y</em>= Ag, Au, Cu) compounds. All analyses were implemented via the Perdew-Burke-Ernzerhof variant of the Generalized Gradient Approximation alongside a plane-wave ultrasoft pseudopotential approach. The findings on the elastic constants indicated that these MgXY<sub>2</sub> compounds have maintained their stability at pressures up to 500 kBar. These constants informed detailed assessments of properties like elastic modulus, Poisson's ratio, Vickers hardness, and material anisotropy. The Quantum Espresso software was utilized to calculate melting points, Debye temperature, and minimum thermal conductivity values. A temperature range spanning from 0 to 800 K allowed for an evaluation of vibrational energy, free energy, entropy, and specific heat capacity metrics. The anticipated physical attributes suggest significant potential for these magnesium compounds in biomedical fields.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"62 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles calculations to investigate the structural, elastic and thermodynamic properties of full-Heusler MgXY2(X = Zn, Cd, Y = Ag, Au, Cu) compounds\",\"authors\":\"Tahsin Özer, Murat Çanlı, Nihat Arıkan, Ali İhsan Öztürk\",\"doi\":\"10.1016/j.jma.2025.03.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnesium and its compounds are recognized as favorable materials for structural uses, primarily due to their lightweight nature and remarkable specific strength. This research employed first-principles methodologies to investigate how pressure affects the crystal structure along with the elastic and thermodynamic characteristics of MgXY<sub>2</sub> (<em>X</em>=Zn, Cd, and <em>Y</em>= Ag, Au, Cu) compounds. All analyses were implemented via the Perdew-Burke-Ernzerhof variant of the Generalized Gradient Approximation alongside a plane-wave ultrasoft pseudopotential approach. The findings on the elastic constants indicated that these MgXY<sub>2</sub> compounds have maintained their stability at pressures up to 500 kBar. These constants informed detailed assessments of properties like elastic modulus, Poisson's ratio, Vickers hardness, and material anisotropy. The Quantum Espresso software was utilized to calculate melting points, Debye temperature, and minimum thermal conductivity values. A temperature range spanning from 0 to 800 K allowed for an evaluation of vibrational energy, free energy, entropy, and specific heat capacity metrics. The anticipated physical attributes suggest significant potential for these magnesium compounds in biomedical fields.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2025.03.012\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.03.012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
First-principles calculations to investigate the structural, elastic and thermodynamic properties of full-Heusler MgXY2(X = Zn, Cd, Y = Ag, Au, Cu) compounds
Magnesium and its compounds are recognized as favorable materials for structural uses, primarily due to their lightweight nature and remarkable specific strength. This research employed first-principles methodologies to investigate how pressure affects the crystal structure along with the elastic and thermodynamic characteristics of MgXY2 (X=Zn, Cd, and Y= Ag, Au, Cu) compounds. All analyses were implemented via the Perdew-Burke-Ernzerhof variant of the Generalized Gradient Approximation alongside a plane-wave ultrasoft pseudopotential approach. The findings on the elastic constants indicated that these MgXY2 compounds have maintained their stability at pressures up to 500 kBar. These constants informed detailed assessments of properties like elastic modulus, Poisson's ratio, Vickers hardness, and material anisotropy. The Quantum Espresso software was utilized to calculate melting points, Debye temperature, and minimum thermal conductivity values. A temperature range spanning from 0 to 800 K allowed for an evaluation of vibrational energy, free energy, entropy, and specific heat capacity metrics. The anticipated physical attributes suggest significant potential for these magnesium compounds in biomedical fields.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.