通过 k 空间滤波器辅助径向矢量光束激发的质子纳米腔打破电偶极选择规则

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yueweiying Wang, Chao Meng, Chenyang Kong, Zhonglin Xie, Fanfan Lu, Lei Xu, Ting Mei, Wending Zhang
{"title":"通过 k 空间滤波器辅助径向矢量光束激发的质子纳米腔打破电偶极选择规则","authors":"Yueweiying Wang, Chao Meng, Chenyang Kong, Zhonglin Xie, Fanfan Lu, Lei Xu, Ting Mei, Wending Zhang","doi":"10.1021/acsphotonics.4c01220","DOIUrl":null,"url":null,"abstract":"Breaking the electric-dipole selection rule in molecular spectroscopy is of great significance for manipulating vibrational state transitions and developing unconventional photofunctions of molecules. In this study, a static plasmonic nanocavity composed of a gold (Au) nanosphere on a silver (Ag) substrate was excited using a radial vector beam with a tunable spatial frequency component. The resulting nanocavity-plasmonic mode has a significantly enhanced electric-field gradient to visualize the electrical-quadrupole transition in the molecule. The static plasmonic nanocavity is tunable by regulating the spatial frequency component of the excitation beam. Thus, the interaction between the electric field/electric-field gradient of the nanocavity-plasmonic mode and the molecular polarizabilities has been accurately identified. This innovative nanospectral platform provides unique opportunities for studying weak physical and chemical processes in molecules.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"58 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking the Electric-Dipole Selection Rule via a Plasmonic Nanocavity Excited by a k-Space Filter-Assisted Radial Vector Beam\",\"authors\":\"Yueweiying Wang, Chao Meng, Chenyang Kong, Zhonglin Xie, Fanfan Lu, Lei Xu, Ting Mei, Wending Zhang\",\"doi\":\"10.1021/acsphotonics.4c01220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breaking the electric-dipole selection rule in molecular spectroscopy is of great significance for manipulating vibrational state transitions and developing unconventional photofunctions of molecules. In this study, a static plasmonic nanocavity composed of a gold (Au) nanosphere on a silver (Ag) substrate was excited using a radial vector beam with a tunable spatial frequency component. The resulting nanocavity-plasmonic mode has a significantly enhanced electric-field gradient to visualize the electrical-quadrupole transition in the molecule. The static plasmonic nanocavity is tunable by regulating the spatial frequency component of the excitation beam. Thus, the interaction between the electric field/electric-field gradient of the nanocavity-plasmonic mode and the molecular polarizabilities has been accurately identified. This innovative nanospectral platform provides unique opportunities for studying weak physical and chemical processes in molecules.\",\"PeriodicalId\":23,\"journal\":{\"name\":\"ACS Photonics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c01220\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01220","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Breaking the Electric-Dipole Selection Rule via a Plasmonic Nanocavity Excited by a k-Space Filter-Assisted Radial Vector Beam

Breaking the Electric-Dipole Selection Rule via a Plasmonic Nanocavity Excited by a k-Space Filter-Assisted Radial Vector Beam
Breaking the electric-dipole selection rule in molecular spectroscopy is of great significance for manipulating vibrational state transitions and developing unconventional photofunctions of molecules. In this study, a static plasmonic nanocavity composed of a gold (Au) nanosphere on a silver (Ag) substrate was excited using a radial vector beam with a tunable spatial frequency component. The resulting nanocavity-plasmonic mode has a significantly enhanced electric-field gradient to visualize the electrical-quadrupole transition in the molecule. The static plasmonic nanocavity is tunable by regulating the spatial frequency component of the excitation beam. Thus, the interaction between the electric field/electric-field gradient of the nanocavity-plasmonic mode and the molecular polarizabilities has been accurately identified. This innovative nanospectral platform provides unique opportunities for studying weak physical and chemical processes in molecules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信