大集合气候模式对北太平洋西部热带气旋频率的季节可预测性

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Takeshi Doi, Tadao Inoue, Tomomichi Ogata, Masami Nonaka
{"title":"大集合气候模式对北太平洋西部热带气旋频率的季节可预测性","authors":"Takeshi Doi, Tadao Inoue, Tomomichi Ogata, Masami Nonaka","doi":"10.1038/s41612-025-00995-0","DOIUrl":null,"url":null,"abstract":"<p>We assessed the seasonal prediction skill of tropical cyclone (TC) frequency over the western North Pacific by the large-ensemble SINTEX-F dynamical system. Although the prediction skills were limited, the correlation skill for the June–August prediction issued in early May was statistically significant around Okinawa and Taiwan. Particularly, the high TC activity in summer 2018 was well predicted. We found that the 2018 positive Indian Ocean Dipole (IOD) contributed to the predictability by the dynamical prediction system: suppressed convection in the eastern tropical Indian Ocean enhanced divergent wind from the eastern tropical Indian Ocean to the Okinawa and Taiwan areas. This helped to generate low pressure in the target area, which was favorable to the TC activity. The IOD contributions to the predictability were also seen in the correlation analyses in 1982–2022 and some case studies in 1994 and 1998. This could be useful for actionable early warnings.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"32 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal predictability of tropical cyclone frequency over the western North Pacific by a large-ensemble climate model\",\"authors\":\"Takeshi Doi, Tadao Inoue, Tomomichi Ogata, Masami Nonaka\",\"doi\":\"10.1038/s41612-025-00995-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We assessed the seasonal prediction skill of tropical cyclone (TC) frequency over the western North Pacific by the large-ensemble SINTEX-F dynamical system. Although the prediction skills were limited, the correlation skill for the June–August prediction issued in early May was statistically significant around Okinawa and Taiwan. Particularly, the high TC activity in summer 2018 was well predicted. We found that the 2018 positive Indian Ocean Dipole (IOD) contributed to the predictability by the dynamical prediction system: suppressed convection in the eastern tropical Indian Ocean enhanced divergent wind from the eastern tropical Indian Ocean to the Okinawa and Taiwan areas. This helped to generate low pressure in the target area, which was favorable to the TC activity. The IOD contributions to the predictability were also seen in the correlation analyses in 1982–2022 and some case studies in 1994 and 1998. This could be useful for actionable early warnings.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-00995-0\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00995-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用大集合SINTEX-F动力系统对北太平洋西部热带气旋频率的季节预报能力进行了评价。虽然预测技能有限,但5月初发布的6 - 8月预报的相关技能在冲绳和台湾地区具有统计学意义。特别是,2018年夏季的高TC活动得到了很好的预测。研究发现,2018年印度洋正偶极子(IOD)有助于动力预报系统的可预测性:热带印度洋东部对流的抑制增强了从热带印度洋东部到冲绳和台湾地区的发散风。这有助于在目标区域产生低压,有利于TC活动。在1982-2022年的相关分析和1994年和1998年的一些案例研究中也可以看到IOD对可预测性的贡献。这对于可采取行动的早期预警可能很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Seasonal predictability of tropical cyclone frequency over the western North Pacific by a large-ensemble climate model

Seasonal predictability of tropical cyclone frequency over the western North Pacific by a large-ensemble climate model

We assessed the seasonal prediction skill of tropical cyclone (TC) frequency over the western North Pacific by the large-ensemble SINTEX-F dynamical system. Although the prediction skills were limited, the correlation skill for the June–August prediction issued in early May was statistically significant around Okinawa and Taiwan. Particularly, the high TC activity in summer 2018 was well predicted. We found that the 2018 positive Indian Ocean Dipole (IOD) contributed to the predictability by the dynamical prediction system: suppressed convection in the eastern tropical Indian Ocean enhanced divergent wind from the eastern tropical Indian Ocean to the Okinawa and Taiwan areas. This helped to generate low pressure in the target area, which was favorable to the TC activity. The IOD contributions to the predictability were also seen in the correlation analyses in 1982–2022 and some case studies in 1994 and 1998. This could be useful for actionable early warnings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信