兰道自举法的应用

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Holmfridur S. Hannesdottir, Andrew J. McLeod, Matthew D. Schwartz, Cristian Vergu
{"title":"兰道自举法的应用","authors":"Holmfridur S. Hannesdottir, Andrew J. McLeod, Matthew D. Schwartz, Cristian Vergu","doi":"10.1103/physrevd.111.085003","DOIUrl":null,"url":null,"abstract":"We advocate a strategy of bootstrapping Feynman integrals from just knowledge of their singular behavior. This approach is complementary to other bootstrap programs, which exploit nonperturbative constraints such as unitarity, or amplitude-level constraints such as gauge invariance. We begin by studying where a Feynman integral can become singular, and the behavior it exhibits near these singularities. We then characterize the space of functions that we expect the integral to evaluate to, in order to formulate an appropriate ansatz. Finally, we derive constraints on where each singularity can appear in this ansatz, and use information about the expansion of the integral around singular points in order to determine the value of all remaining free coefficients. Throughout, we highlight how constraints that have previously only been derived for integrals with generic masses can be extended to integrals involving particles of equal or vanishing mass. We illustrate the effectiveness of this approach by bootstrapping a number of examples, including the four-point double box with a massive internal loop. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"133 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of the Landau bootstrap\",\"authors\":\"Holmfridur S. Hannesdottir, Andrew J. McLeod, Matthew D. Schwartz, Cristian Vergu\",\"doi\":\"10.1103/physrevd.111.085003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We advocate a strategy of bootstrapping Feynman integrals from just knowledge of their singular behavior. This approach is complementary to other bootstrap programs, which exploit nonperturbative constraints such as unitarity, or amplitude-level constraints such as gauge invariance. We begin by studying where a Feynman integral can become singular, and the behavior it exhibits near these singularities. We then characterize the space of functions that we expect the integral to evaluate to, in order to formulate an appropriate ansatz. Finally, we derive constraints on where each singularity can appear in this ansatz, and use information about the expansion of the integral around singular points in order to determine the value of all remaining free coefficients. Throughout, we highlight how constraints that have previously only been derived for integrals with generic masses can be extended to integrals involving particles of equal or vanishing mass. We illustrate the effectiveness of this approach by bootstrapping a number of examples, including the four-point double box with a massive internal loop. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.085003\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.085003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of the Landau bootstrap
We advocate a strategy of bootstrapping Feynman integrals from just knowledge of their singular behavior. This approach is complementary to other bootstrap programs, which exploit nonperturbative constraints such as unitarity, or amplitude-level constraints such as gauge invariance. We begin by studying where a Feynman integral can become singular, and the behavior it exhibits near these singularities. We then characterize the space of functions that we expect the integral to evaluate to, in order to formulate an appropriate ansatz. Finally, we derive constraints on where each singularity can appear in this ansatz, and use information about the expansion of the integral around singular points in order to determine the value of all remaining free coefficients. Throughout, we highlight how constraints that have previously only been derived for integrals with generic masses can be extended to integrals involving particles of equal or vanishing mass. We illustrate the effectiveness of this approach by bootstrapping a number of examples, including the four-point double box with a massive internal loop. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信