使用峰值压力值重建右心室压力曲线的人工智能:概念验证研究。

European heart journal. Imaging methods and practice Pub Date : 2024-10-28 eCollection Date: 2024-10-01 DOI:10.1093/ehjimp/qyae099
Ádám Szijártó, Alina Nicoara, Mihai Podgoreanu, Márton Tokodi, Alexandra Fábián, Béla Merkely, András Sárkány, Zoltán Tősér, Sergio Caravita, Claudia Baratto, Michele Tomaselli, Denisa Muraru, Luigi Paolo Badano, Bálint Lakatos, Attila Kovács
{"title":"使用峰值压力值重建右心室压力曲线的人工智能:概念验证研究。","authors":"Ádám Szijártó, Alina Nicoara, Mihai Podgoreanu, Márton Tokodi, Alexandra Fábián, Béla Merkely, András Sárkány, Zoltán Tősér, Sergio Caravita, Claudia Baratto, Michele Tomaselli, Denisa Muraru, Luigi Paolo Badano, Bálint Lakatos, Attila Kovács","doi":"10.1093/ehjimp/qyae099","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Conventional echocardiographic parameters of right ventricular (RV) function are afterload-dependent. Therefore, incorporating RV pressures may enable the formulation of new parameters that reflect intrinsic RV function accurately. Accordingly, we sought to develop an artificial intelligence-based method to reconstruct the RV pressure curve based on the peak RV pressure.</p><p><strong>Methods and results: </strong>We invasively acquired RV pressure in 29 heart failure patients before and after implanting a left ventricular (LV) assist device. Using these tracings, we trained various machine learning models to reconstruct the RV pressure curve of the entire cardiac cycle based on the peak value of the curve. The best-performing model was compared with two other methods that estimated RV pressures based on a reference LV and RV pressure curve, respectively. Seventeen consecutive patients from another centre who underwent right heart catheterization and simultaneous echocardiography served as an external validation cohort. Among the evaluated algorithms, multilayer perceptron (MLP) achieved the best performance with an <i>R</i> <sup>2</sup> of 0.887 (0.834-0.941). The RV and LV reference curve-based methods achieved <i>R</i> <sup>2</sup> values of 0.879 (0.815-0.943) and 0.636 (0.500-0.771), respectively. During external validation, MLP exhibited similarly good performance [<i>R</i> <sup>2</sup> 0.911 (0.873-0.948)], which decreased only modestly if the echocardiography-derived peak RV pressure was used instead of the invasively measured peak RV pressure [<i>R</i> <sup>2</sup> 0.802 (0.694-0.909)].</p><p><strong>Conclusions: </strong>The proposed method enables the reconstruction of the RV pressure curve using only the peak value as input. Thus, it may serve as a fundamental component for developing new echocardiographic tools targeting the afterload-adjusted assessment of RV function.</p>","PeriodicalId":94317,"journal":{"name":"European heart journal. Imaging methods and practice","volume":"2 4","pages":"qyae099"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959175/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-enabled reconstruction of the right ventricular pressure curve using the peak pressure value: a proof-of-concept study.\",\"authors\":\"Ádám Szijártó, Alina Nicoara, Mihai Podgoreanu, Márton Tokodi, Alexandra Fábián, Béla Merkely, András Sárkány, Zoltán Tősér, Sergio Caravita, Claudia Baratto, Michele Tomaselli, Denisa Muraru, Luigi Paolo Badano, Bálint Lakatos, Attila Kovács\",\"doi\":\"10.1093/ehjimp/qyae099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Conventional echocardiographic parameters of right ventricular (RV) function are afterload-dependent. Therefore, incorporating RV pressures may enable the formulation of new parameters that reflect intrinsic RV function accurately. Accordingly, we sought to develop an artificial intelligence-based method to reconstruct the RV pressure curve based on the peak RV pressure.</p><p><strong>Methods and results: </strong>We invasively acquired RV pressure in 29 heart failure patients before and after implanting a left ventricular (LV) assist device. Using these tracings, we trained various machine learning models to reconstruct the RV pressure curve of the entire cardiac cycle based on the peak value of the curve. The best-performing model was compared with two other methods that estimated RV pressures based on a reference LV and RV pressure curve, respectively. Seventeen consecutive patients from another centre who underwent right heart catheterization and simultaneous echocardiography served as an external validation cohort. Among the evaluated algorithms, multilayer perceptron (MLP) achieved the best performance with an <i>R</i> <sup>2</sup> of 0.887 (0.834-0.941). The RV and LV reference curve-based methods achieved <i>R</i> <sup>2</sup> values of 0.879 (0.815-0.943) and 0.636 (0.500-0.771), respectively. During external validation, MLP exhibited similarly good performance [<i>R</i> <sup>2</sup> 0.911 (0.873-0.948)], which decreased only modestly if the echocardiography-derived peak RV pressure was used instead of the invasively measured peak RV pressure [<i>R</i> <sup>2</sup> 0.802 (0.694-0.909)].</p><p><strong>Conclusions: </strong>The proposed method enables the reconstruction of the RV pressure curve using only the peak value as input. Thus, it may serve as a fundamental component for developing new echocardiographic tools targeting the afterload-adjusted assessment of RV function.</p>\",\"PeriodicalId\":94317,\"journal\":{\"name\":\"European heart journal. Imaging methods and practice\",\"volume\":\"2 4\",\"pages\":\"qyae099\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Imaging methods and practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjimp/qyae099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Imaging methods and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjimp/qyae099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:常规的右心室功能超声心动图参数是后负荷依赖性的。因此,纳入RV压力可以制定准确反映RV固有功能的新参数。因此,我们试图开发一种基于人工智能的方法,根据RV峰值压力重建RV压力曲线。方法与结果:我们对29例心力衰竭患者在植入左室辅助装置前后进行了有创左室压力获取。利用这些跟踪,我们训练了各种机器学习模型,根据曲线的峰值重建整个心动周期的右心室压力曲线。比较了另外两种分别基于参考左室压力曲线和左室压力曲线估计左室压力的方法。来自另一个中心的17名连续患者接受了右心导管和同时超声心动图检查,作为外部验证队列。在被评价的算法中,多层感知器(MLP)的r2为0.887(0.834-0.941),表现最佳。基于RV和LV参考曲线的方法r2值分别为0.879(0.815-0.943)和0.636(0.500-0.771)。在外部验证中,MLP表现出同样良好的性能[R = 0.911(0.873-0.948)],如果使用超声心动图得出的左室峰值压力代替有创测量的左室峰值压力,则MLP仅略有下降[R = 0.802(0.694-0.909)]。结论:该方法仅使用峰值作为输入即可重建RV压力曲线。因此,它可以作为开发新的超声心动图工具的基本组成部分,用于后负荷调整后的心室功能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence-enabled reconstruction of the right ventricular pressure curve using the peak pressure value: a proof-of-concept study.

Aims: Conventional echocardiographic parameters of right ventricular (RV) function are afterload-dependent. Therefore, incorporating RV pressures may enable the formulation of new parameters that reflect intrinsic RV function accurately. Accordingly, we sought to develop an artificial intelligence-based method to reconstruct the RV pressure curve based on the peak RV pressure.

Methods and results: We invasively acquired RV pressure in 29 heart failure patients before and after implanting a left ventricular (LV) assist device. Using these tracings, we trained various machine learning models to reconstruct the RV pressure curve of the entire cardiac cycle based on the peak value of the curve. The best-performing model was compared with two other methods that estimated RV pressures based on a reference LV and RV pressure curve, respectively. Seventeen consecutive patients from another centre who underwent right heart catheterization and simultaneous echocardiography served as an external validation cohort. Among the evaluated algorithms, multilayer perceptron (MLP) achieved the best performance with an R 2 of 0.887 (0.834-0.941). The RV and LV reference curve-based methods achieved R 2 values of 0.879 (0.815-0.943) and 0.636 (0.500-0.771), respectively. During external validation, MLP exhibited similarly good performance [R 2 0.911 (0.873-0.948)], which decreased only modestly if the echocardiography-derived peak RV pressure was used instead of the invasively measured peak RV pressure [R 2 0.802 (0.694-0.909)].

Conclusions: The proposed method enables the reconstruction of the RV pressure curve using only the peak value as input. Thus, it may serve as a fundamental component for developing new echocardiographic tools targeting the afterload-adjusted assessment of RV function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信