{"title":"实现人类太空飞行的双重功能材料:用于宇航员任务生命支持的二氧化碳捕获和转换。","authors":"Jonathan D Wells, Grace A Belancik","doi":"10.1021/cbe.4c00162","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon dioxide removal is important for keeping astronauts alive in space, where CO<sub>2</sub> can accumulate to harmful or even deadly levels in cabin air if untreated. Additionally, on Earth, CO<sub>2</sub> direct air capture is an important technology for reversing the harmful impacts of rising anthropogenic atmospheric CO<sub>2</sub> concentrations. In both scenarios, captured CO<sub>2</sub> needs to be dealt with, potentially via reaction into a more desirable final product such as renewable hydrocarbons or water. One potential solution is utilizing combined solid sorbents and catalysts in one material, known as dual function material (DFM). In this work, DFMs are used to capture and convert CO<sub>2</sub> from spacecraft cabin air into water as a form of recycling, which is necessary for enabling a longer duration human spaceflight. DFM is studied with CO<sub>2</sub> concentrations relevant to cabin air conditions for astronauts (1500 to 3000 ppm of CO<sub>2</sub>) both with and without moisture present. DFM CO<sub>2</sub> capacity increases by nearly a factor of 4 and uptake rates by 10 with more realistic moist inlet air compared to dry cabin air. The wet capacity of DFM is comparable to state-of-the-art sorbents in use on the International Space Station (ISS) now; however, ISS systems must dry cabin air before CO<sub>2</sub> capture since they lose CO<sub>2</sub> capacity with a wet air inlet. DFM shows promise to save significant mass, size, power, and complexity for a CO<sub>2</sub> removal and conversion system, which could help enable longer duration human space missions.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 3","pages":"192-198"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955851/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual Function Materials Enabling Human Space Flight: Carbon Dioxide Capture and Conversion for Life Support on Crewed Missions.\",\"authors\":\"Jonathan D Wells, Grace A Belancik\",\"doi\":\"10.1021/cbe.4c00162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon dioxide removal is important for keeping astronauts alive in space, where CO<sub>2</sub> can accumulate to harmful or even deadly levels in cabin air if untreated. Additionally, on Earth, CO<sub>2</sub> direct air capture is an important technology for reversing the harmful impacts of rising anthropogenic atmospheric CO<sub>2</sub> concentrations. In both scenarios, captured CO<sub>2</sub> needs to be dealt with, potentially via reaction into a more desirable final product such as renewable hydrocarbons or water. One potential solution is utilizing combined solid sorbents and catalysts in one material, known as dual function material (DFM). In this work, DFMs are used to capture and convert CO<sub>2</sub> from spacecraft cabin air into water as a form of recycling, which is necessary for enabling a longer duration human spaceflight. DFM is studied with CO<sub>2</sub> concentrations relevant to cabin air conditions for astronauts (1500 to 3000 ppm of CO<sub>2</sub>) both with and without moisture present. DFM CO<sub>2</sub> capacity increases by nearly a factor of 4 and uptake rates by 10 with more realistic moist inlet air compared to dry cabin air. The wet capacity of DFM is comparable to state-of-the-art sorbents in use on the International Space Station (ISS) now; however, ISS systems must dry cabin air before CO<sub>2</sub> capture since they lose CO<sub>2</sub> capacity with a wet air inlet. DFM shows promise to save significant mass, size, power, and complexity for a CO<sub>2</sub> removal and conversion system, which could help enable longer duration human space missions.</p>\",\"PeriodicalId\":100230,\"journal\":{\"name\":\"Chem & Bio Engineering\",\"volume\":\"2 3\",\"pages\":\"192-198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11955851/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem & Bio Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/cbe.4c00162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/27 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbe.4c00162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Dual Function Materials Enabling Human Space Flight: Carbon Dioxide Capture and Conversion for Life Support on Crewed Missions.
Carbon dioxide removal is important for keeping astronauts alive in space, where CO2 can accumulate to harmful or even deadly levels in cabin air if untreated. Additionally, on Earth, CO2 direct air capture is an important technology for reversing the harmful impacts of rising anthropogenic atmospheric CO2 concentrations. In both scenarios, captured CO2 needs to be dealt with, potentially via reaction into a more desirable final product such as renewable hydrocarbons or water. One potential solution is utilizing combined solid sorbents and catalysts in one material, known as dual function material (DFM). In this work, DFMs are used to capture and convert CO2 from spacecraft cabin air into water as a form of recycling, which is necessary for enabling a longer duration human spaceflight. DFM is studied with CO2 concentrations relevant to cabin air conditions for astronauts (1500 to 3000 ppm of CO2) both with and without moisture present. DFM CO2 capacity increases by nearly a factor of 4 and uptake rates by 10 with more realistic moist inlet air compared to dry cabin air. The wet capacity of DFM is comparable to state-of-the-art sorbents in use on the International Space Station (ISS) now; however, ISS systems must dry cabin air before CO2 capture since they lose CO2 capacity with a wet air inlet. DFM shows promise to save significant mass, size, power, and complexity for a CO2 removal and conversion system, which could help enable longer duration human space missions.