序贯多任务随机试验的试验内数据借用。

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Ales Kotalik, David M Vock, Nancy E Sherwood, Brian P Hobbs, Joseph S Koopmeiners
{"title":"序贯多任务随机试验的试验内数据借用。","authors":"Ales Kotalik, David M Vock, Nancy E Sherwood, Brian P Hobbs, Joseph S Koopmeiners","doi":"10.1093/biostatistics/kxaf003","DOIUrl":null,"url":null,"abstract":"<p><p>The Sequential Multiple Assignment Randomized Trial (SMART) is a complex trial design that involves randomizing a single participant multiple times in a sequential manner. This results in the branching nature of a SMART, which represents several distinct groups defined by different combinations of treatments, response statuses, etc. A SMART can then answer various scientific questions of interest, eg, the optimal dynamic treatment regime (DTR) for treating a chronic illness, what intervention to offer first, and what intervention to offer to nonresponders (or suboptimal responders). However, the analysis of a SMART can suffer from low precision, as the potentially widely branching structure can lead to reduced sample sizes in some groups of interest. In this paper, we propose a novel analysis method for a SMART in which dynamic borrowing is used to borrow strength across groups with similar expected outcomes, thus providing increased precision for the estimation of the expected outcomes of DTRs. We apply our method to a SMART evaluating various weight loss strategies using a binary endpoint of clinically significant weight loss and show by simulation that our method can improve the precision of the estimated expected outcome of a DTR, aid in the identification of the optimal DTR, and produce a clustering analysis of DTRs embedded in a SMART.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963638/pdf/","citationCount":"0","resultStr":"{\"title\":\"Within-trial data borrowing for sequential multiple assignment randomized trials.\",\"authors\":\"Ales Kotalik, David M Vock, Nancy E Sherwood, Brian P Hobbs, Joseph S Koopmeiners\",\"doi\":\"10.1093/biostatistics/kxaf003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Sequential Multiple Assignment Randomized Trial (SMART) is a complex trial design that involves randomizing a single participant multiple times in a sequential manner. This results in the branching nature of a SMART, which represents several distinct groups defined by different combinations of treatments, response statuses, etc. A SMART can then answer various scientific questions of interest, eg, the optimal dynamic treatment regime (DTR) for treating a chronic illness, what intervention to offer first, and what intervention to offer to nonresponders (or suboptimal responders). However, the analysis of a SMART can suffer from low precision, as the potentially widely branching structure can lead to reduced sample sizes in some groups of interest. In this paper, we propose a novel analysis method for a SMART in which dynamic borrowing is used to borrow strength across groups with similar expected outcomes, thus providing increased precision for the estimation of the expected outcomes of DTRs. We apply our method to a SMART evaluating various weight loss strategies using a binary endpoint of clinically significant weight loss and show by simulation that our method can improve the precision of the estimated expected outcome of a DTR, aid in the identification of the optimal DTR, and produce a clustering analysis of DTRs embedded in a SMART.</p>\",\"PeriodicalId\":55357,\"journal\":{\"name\":\"Biostatistics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963638/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxaf003\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxaf003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

顺序多重分配随机试验(SMART)是一种复杂的试验设计,涉及以顺序方式将单个参与者多次随机化。这导致了SMART的分支性质,它代表了几个不同的组,由不同的治疗组合、反应状态等定义。然后SMART可以回答各种感兴趣的科学问题,例如,治疗慢性疾病的最佳动态治疗方案(DTR),首先提供什么干预措施,以及对无反应(或次优反应)提供什么干预措施。然而,对SMART的分析可能存在精度低的问题,因为潜在的广泛分支结构可能导致某些感兴趣组的样本量减少。在本文中,我们提出了一种新的SMART分析方法,其中动态借用用于在具有相似预期结果的组之间借用强度,从而提高了dtr预期结果的估计精度。我们将我们的方法应用于SMART,使用临床显著减肥的二元终点评估各种减肥策略,并通过模拟表明,我们的方法可以提高DTR估计预期结果的精度,有助于确定最佳DTR,并对嵌入在SMART中的DTR进行聚类分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Within-trial data borrowing for sequential multiple assignment randomized trials.

The Sequential Multiple Assignment Randomized Trial (SMART) is a complex trial design that involves randomizing a single participant multiple times in a sequential manner. This results in the branching nature of a SMART, which represents several distinct groups defined by different combinations of treatments, response statuses, etc. A SMART can then answer various scientific questions of interest, eg, the optimal dynamic treatment regime (DTR) for treating a chronic illness, what intervention to offer first, and what intervention to offer to nonresponders (or suboptimal responders). However, the analysis of a SMART can suffer from low precision, as the potentially widely branching structure can lead to reduced sample sizes in some groups of interest. In this paper, we propose a novel analysis method for a SMART in which dynamic borrowing is used to borrow strength across groups with similar expected outcomes, thus providing increased precision for the estimation of the expected outcomes of DTRs. We apply our method to a SMART evaluating various weight loss strategies using a binary endpoint of clinically significant weight loss and show by simulation that our method can improve the precision of the estimated expected outcome of a DTR, aid in the identification of the optimal DTR, and produce a clustering analysis of DTRs embedded in a SMART.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信