Qin An, Hirohisa Oda, Yuichiro Hayashi, Takayuki Kitasaka, Aitaro Takimoto, Akinari Hinoki, Hiroo Uchida, Kojiro Suzuki, Masahiro Oda, Kensaku Mori
{"title":"基于CT体积的小肠分割轻量级多视图网络双向教学。","authors":"Qin An, Hirohisa Oda, Yuichiro Hayashi, Takayuki Kitasaka, Aitaro Takimoto, Akinari Hinoki, Hiroo Uchida, Kojiro Suzuki, Masahiro Oda, Kensaku Mori","doi":"10.1117/1.JMI.12.2.024003","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We present a semi-supervised method for intestine segmentation to assist clinicians in diagnosing intestinal diseases. Accurate segmentation is essential for planning treatments for conditions such as intestinal obstruction. Although fully supervised learning performs well with abundant labeled data, the complexity of the intestine's spatial structure makes labeling time-intensive, resulting in limited labeled data. We propose a 3D segmentation network with a bidirectional teaching strategy to enhance segmentation accuracy using this limited dataset.</p><p><strong>Method: </strong>The proposed semi-supervised method segments the intestine from computed tomography (CT) volumes using bidirectional teaching, where two backbones with different initial weights are trained simultaneously to generate pseudo-labels and employ unlabeled data, mitigating the challenge of limited labeled data. Intestine segmentation is further complicated by complex spatial features. To address this, we propose a lightweight multi-view symmetric network, which uses small-sized convolutional kernels instead of large ones to reduce parameters and capture multi-scale features from diverse perceptual fields, enhancing learning ability.</p><p><strong>Results: </strong>We evaluated the proposed method with 59 CT volumes and repeated all experiments five times. Experimental results showed that the average Dice of the proposed method was 80.45%, the average precision was 84.12%, and the average recall was 78.84%.</p><p><strong>Conclusions: </strong>The proposed method can effectively utilize large-scale unlabeled data with pseudo-labels, which is crucial in reducing the effect of limited labeled data in medical image segmentation. Furthermore, we assign different weights to the pseudo-labels to improve their reliability. From the result, we can see that the method produced competitive performance compared with previous methods.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 2","pages":"024003"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957399/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bidirectional teaching between lightweight multi-view networks for intestine segmentation from CT volume.\",\"authors\":\"Qin An, Hirohisa Oda, Yuichiro Hayashi, Takayuki Kitasaka, Aitaro Takimoto, Akinari Hinoki, Hiroo Uchida, Kojiro Suzuki, Masahiro Oda, Kensaku Mori\",\"doi\":\"10.1117/1.JMI.12.2.024003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We present a semi-supervised method for intestine segmentation to assist clinicians in diagnosing intestinal diseases. Accurate segmentation is essential for planning treatments for conditions such as intestinal obstruction. Although fully supervised learning performs well with abundant labeled data, the complexity of the intestine's spatial structure makes labeling time-intensive, resulting in limited labeled data. We propose a 3D segmentation network with a bidirectional teaching strategy to enhance segmentation accuracy using this limited dataset.</p><p><strong>Method: </strong>The proposed semi-supervised method segments the intestine from computed tomography (CT) volumes using bidirectional teaching, where two backbones with different initial weights are trained simultaneously to generate pseudo-labels and employ unlabeled data, mitigating the challenge of limited labeled data. Intestine segmentation is further complicated by complex spatial features. To address this, we propose a lightweight multi-view symmetric network, which uses small-sized convolutional kernels instead of large ones to reduce parameters and capture multi-scale features from diverse perceptual fields, enhancing learning ability.</p><p><strong>Results: </strong>We evaluated the proposed method with 59 CT volumes and repeated all experiments five times. Experimental results showed that the average Dice of the proposed method was 80.45%, the average precision was 84.12%, and the average recall was 78.84%.</p><p><strong>Conclusions: </strong>The proposed method can effectively utilize large-scale unlabeled data with pseudo-labels, which is crucial in reducing the effect of limited labeled data in medical image segmentation. Furthermore, we assign different weights to the pseudo-labels to improve their reliability. From the result, we can see that the method produced competitive performance compared with previous methods.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"12 2\",\"pages\":\"024003\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11957399/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.12.2.024003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.2.024003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Bidirectional teaching between lightweight multi-view networks for intestine segmentation from CT volume.
Purpose: We present a semi-supervised method for intestine segmentation to assist clinicians in diagnosing intestinal diseases. Accurate segmentation is essential for planning treatments for conditions such as intestinal obstruction. Although fully supervised learning performs well with abundant labeled data, the complexity of the intestine's spatial structure makes labeling time-intensive, resulting in limited labeled data. We propose a 3D segmentation network with a bidirectional teaching strategy to enhance segmentation accuracy using this limited dataset.
Method: The proposed semi-supervised method segments the intestine from computed tomography (CT) volumes using bidirectional teaching, where two backbones with different initial weights are trained simultaneously to generate pseudo-labels and employ unlabeled data, mitigating the challenge of limited labeled data. Intestine segmentation is further complicated by complex spatial features. To address this, we propose a lightweight multi-view symmetric network, which uses small-sized convolutional kernels instead of large ones to reduce parameters and capture multi-scale features from diverse perceptual fields, enhancing learning ability.
Results: We evaluated the proposed method with 59 CT volumes and repeated all experiments five times. Experimental results showed that the average Dice of the proposed method was 80.45%, the average precision was 84.12%, and the average recall was 78.84%.
Conclusions: The proposed method can effectively utilize large-scale unlabeled data with pseudo-labels, which is crucial in reducing the effect of limited labeled data in medical image segmentation. Furthermore, we assign different weights to the pseudo-labels to improve their reliability. From the result, we can see that the method produced competitive performance compared with previous methods.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.