[基于蛋白质语言模型的突变效应预测研究进展]。

Q4 Biochemistry, Genetics and Molecular Biology
Liang Zhang, Pan Tan, Liang Hong
{"title":"[基于蛋白质语言模型的突变效应预测研究进展]。","authors":"Liang Zhang, Pan Tan, Liang Hong","doi":"10.13345/j.cjb.240683","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting protein mutation effects is a key challenge in bioinformatics and protein engineering. Recent advancements in deep learning, particularly the development of protein language models (PLMs), have brought new opportunities to this field. This review summarizes the application of PLMs in predicting protein mutation effects, focusing on three main types of models: sequence-based models, structure-based models, and models that combine sequence and structural information. We analyze in detail the principles, advantages, and limitations of these models and discuss the application of unsupervised and supervised learning in model training. Furthermore, this paper discusses the main challenges currently faced, including the acquisition of high-quality datasets and the handling of data noise. Finally, we look ahead to future research directions, including the application prospects of emerging technologies such as multimodal fusion and few-shot learning. This review aims to provide researchers with a comprehensive perspective to further advance the prediction of protein mutation effects.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 3","pages":"934-948"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Research progress in mutation effect prediction based on protein language models].\",\"authors\":\"Liang Zhang, Pan Tan, Liang Hong\",\"doi\":\"10.13345/j.cjb.240683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting protein mutation effects is a key challenge in bioinformatics and protein engineering. Recent advancements in deep learning, particularly the development of protein language models (PLMs), have brought new opportunities to this field. This review summarizes the application of PLMs in predicting protein mutation effects, focusing on three main types of models: sequence-based models, structure-based models, and models that combine sequence and structural information. We analyze in detail the principles, advantages, and limitations of these models and discuss the application of unsupervised and supervised learning in model training. Furthermore, this paper discusses the main challenges currently faced, including the acquisition of high-quality datasets and the handling of data noise. Finally, we look ahead to future research directions, including the application prospects of emerging technologies such as multimodal fusion and few-shot learning. This review aims to provide researchers with a comprehensive perspective to further advance the prediction of protein mutation effects.</p>\",\"PeriodicalId\":21778,\"journal\":{\"name\":\"Sheng wu gong cheng xue bao = Chinese journal of biotechnology\",\"volume\":\"41 3\",\"pages\":\"934-948\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sheng wu gong cheng xue bao = Chinese journal of biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13345/j.cjb.240683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质突变效应预测是生物信息学和蛋白质工程领域的一个关键挑战。深度学习的最新进展,特别是蛋白质语言模型(PLMs)的发展,为这一领域带来了新的机遇。本文综述了PLMs在蛋白质突变效应预测中的应用,重点介绍了三种主要模型:基于序列的模型、基于结构的模型和结合序列和结构信息的模型。我们详细分析了这些模型的原理、优点和局限性,并讨论了无监督学习和有监督学习在模型训练中的应用。此外,本文还讨论了目前面临的主要挑战,包括高质量数据集的获取和数据噪声的处理。最后,展望了未来的研究方向,包括多模态融合、少镜头学习等新兴技术的应用前景。本文旨在为进一步推进蛋白质突变效应的预测提供一个全面的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Research progress in mutation effect prediction based on protein language models].

Predicting protein mutation effects is a key challenge in bioinformatics and protein engineering. Recent advancements in deep learning, particularly the development of protein language models (PLMs), have brought new opportunities to this field. This review summarizes the application of PLMs in predicting protein mutation effects, focusing on three main types of models: sequence-based models, structure-based models, and models that combine sequence and structural information. We analyze in detail the principles, advantages, and limitations of these models and discuss the application of unsupervised and supervised learning in model training. Furthermore, this paper discusses the main challenges currently faced, including the acquisition of high-quality datasets and the handling of data noise. Finally, we look ahead to future research directions, including the application prospects of emerging technologies such as multimodal fusion and few-shot learning. This review aims to provide researchers with a comprehensive perspective to further advance the prediction of protein mutation effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Sheng wu gong cheng xue bao = Chinese journal of biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.50
自引率
0.00%
发文量
298
期刊介绍: Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信