生物制造中核酸元件的智能设计

Q4 Biochemistry, Genetics and Molecular Biology
Jinsheng Wang, Zhe Sun, Xueli Zhang
{"title":"生物制造中核酸元件的智能设计","authors":"Jinsheng Wang, Zhe Sun, Xueli Zhang","doi":"10.13345/j.cjb.240599","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleic acid elements are essential functional sequences that play critical roles in regulating gene expression, optimizing pathways, and enabling gene editing to enhance the production of target products in biomanufacturing. Therefore, the design and optimization of these elements are crucial in constructing efficient cell factories. Artificial intelligence (AI) provides robust support for biomanufacturing by accurately predicting functional nucleic acid elements, designing and optimizing sequences with quantified functions, and elucidating the operating mechanisms of these elements. In recent years, AI has significantly accelerated the progress in biomanufacturing by reducing experimental workloads through the design and optimization of promoters, ribosome-binding sites, terminators, and their combinations. Despite these advancements, the application of AI in biomanufacturing remains limited due to the complexity of biological systems and the lack of highly quantified training data. This review summarizes the various nucleic acid elements utilized in biomanufacturing, the tools developed for predicting and designing these elements based on AI algorithms, and the case studies showcasing the applications of AI in biomanufacturing. By integrating AI with synthetic biology and high-throughput techniques, we anticipate the development of more efficient tools for designing nucleic acid elements and accelerating the application of AI in biomanufacturing.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 3","pages":"968-992"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Intelligent design of nucleic acid elements in biomanufacturing].\",\"authors\":\"Jinsheng Wang, Zhe Sun, Xueli Zhang\",\"doi\":\"10.13345/j.cjb.240599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nucleic acid elements are essential functional sequences that play critical roles in regulating gene expression, optimizing pathways, and enabling gene editing to enhance the production of target products in biomanufacturing. Therefore, the design and optimization of these elements are crucial in constructing efficient cell factories. Artificial intelligence (AI) provides robust support for biomanufacturing by accurately predicting functional nucleic acid elements, designing and optimizing sequences with quantified functions, and elucidating the operating mechanisms of these elements. In recent years, AI has significantly accelerated the progress in biomanufacturing by reducing experimental workloads through the design and optimization of promoters, ribosome-binding sites, terminators, and their combinations. Despite these advancements, the application of AI in biomanufacturing remains limited due to the complexity of biological systems and the lack of highly quantified training data. This review summarizes the various nucleic acid elements utilized in biomanufacturing, the tools developed for predicting and designing these elements based on AI algorithms, and the case studies showcasing the applications of AI in biomanufacturing. By integrating AI with synthetic biology and high-throughput techniques, we anticipate the development of more efficient tools for designing nucleic acid elements and accelerating the application of AI in biomanufacturing.</p>\",\"PeriodicalId\":21778,\"journal\":{\"name\":\"Sheng wu gong cheng xue bao = Chinese journal of biotechnology\",\"volume\":\"41 3\",\"pages\":\"968-992\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sheng wu gong cheng xue bao = Chinese journal of biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13345/j.cjb.240599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

核酸元件是生物制造中必不可少的功能序列,在调控基因表达、优化途径、基因编辑提高靶产品产量等方面发挥着关键作用。因此,这些元素的设计和优化对于构建高效的电池工厂至关重要。人工智能(AI)通过准确预测功能性核酸元件,设计和优化具有量化功能的序列,并阐明这些元件的运行机制,为生物制造提供了强大的支持。近年来,人工智能通过设计和优化启动子、核糖体结合位点、终止子及其组合,减少了实验工作量,显著加快了生物制造的进展。尽管取得了这些进步,但由于生物系统的复杂性和缺乏高度量化的训练数据,人工智能在生物制造中的应用仍然有限。本文综述了生物制造中使用的各种核酸元素,基于人工智能算法预测和设计这些元素的工具,以及人工智能在生物制造中的应用案例。通过将人工智能与合成生物学和高通量技术相结合,我们预计将开发出更有效的工具来设计核酸元件,并加速人工智能在生物制造中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Intelligent design of nucleic acid elements in biomanufacturing].

Nucleic acid elements are essential functional sequences that play critical roles in regulating gene expression, optimizing pathways, and enabling gene editing to enhance the production of target products in biomanufacturing. Therefore, the design and optimization of these elements are crucial in constructing efficient cell factories. Artificial intelligence (AI) provides robust support for biomanufacturing by accurately predicting functional nucleic acid elements, designing and optimizing sequences with quantified functions, and elucidating the operating mechanisms of these elements. In recent years, AI has significantly accelerated the progress in biomanufacturing by reducing experimental workloads through the design and optimization of promoters, ribosome-binding sites, terminators, and their combinations. Despite these advancements, the application of AI in biomanufacturing remains limited due to the complexity of biological systems and the lack of highly quantified training data. This review summarizes the various nucleic acid elements utilized in biomanufacturing, the tools developed for predicting and designing these elements based on AI algorithms, and the case studies showcasing the applications of AI in biomanufacturing. By integrating AI with synthetic biology and high-throughput techniques, we anticipate the development of more efficient tools for designing nucleic acid elements and accelerating the application of AI in biomanufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Sheng wu gong cheng xue bao = Chinese journal of biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.50
自引率
0.00%
发文量
298
期刊介绍: Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信